Patents by Inventor S. Jordan Kerns
S. Jordan Kerns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240309331Abstract: The present invention relates to a combination of microbes, cell culture systems and microfluidic fluidic systems for use in providing a human Intestine On-Chip with optimal intestinal motility. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of bacteria, such as probiotic bacteria, may find use in providing an Intestine-On-Chip for testing intestinal motility function. In some embodiments, an Intestine On-Chip may be used for identifying (testing) therapeutic compounds continuing probiotic microbes or compounds for inducing intestinal motility for use in treating gastrointestinal disorders or diseases related to intestinal function.Type: ApplicationFiled: February 29, 2024Publication date: September 19, 2024Inventors: S. Jordan Kerns, Catherine Karalis, Janna Nawroth, Remi Villenave, Jenifer Obrigewitch, Doris Roth, Michael Salmon, Athanasia Apostolou, David Conegliano
-
Patent number: 12091650Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.Type: GrantFiled: February 26, 2019Date of Patent: September 17, 2024Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
-
Publication number: 20240254449Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: ApplicationFiled: April 4, 2024Publication date: August 1, 2024Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Publication number: 20240228954Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.Type: ApplicationFiled: December 5, 2023Publication date: July 11, 2024Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
-
Patent number: 12019083Abstract: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.Type: GrantFiled: June 7, 2022Date of Patent: June 25, 2024Assignee: EMULATE, INC.Inventors: Josiah Sliz, Daniel Levner, Brian Zuckerman, Norman Wen, Jonathan Rubins, Tanvi Shroff, Christopher David Hinojosa, Grace Ahn, Victor Antontsev, Jefferson Puerta, David Conegliano, S. Jordan Kerns
-
Patent number: 11952592Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: GrantFiled: February 23, 2022Date of Patent: April 9, 2024Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Publication number: 20240076625Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a rheologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.Type: ApplicationFiled: September 7, 2023Publication date: March 7, 2024Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
-
Publication number: 20240024873Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.Type: ApplicationFiled: September 28, 2023Publication date: January 25, 2024Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
-
Patent number: 11859165Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.Type: GrantFiled: January 17, 2023Date of Patent: January 2, 2024Assignee: EMULATE, INC.Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
-
Patent number: 11833512Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.Type: GrantFiled: March 29, 2021Date of Patent: December 5, 2023Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
-
Publication number: 20230341378Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: ApplicationFiled: June 27, 2023Publication date: October 26, 2023Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Patent number: 11788044Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.Type: GrantFiled: March 16, 2020Date of Patent: October 17, 2023Assignee: EMULATE, Inc.Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
-
Publication number: 20230287324Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.Type: ApplicationFiled: January 17, 2023Publication date: September 14, 2023Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
-
Patent number: 11733234Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: GrantFiled: July 12, 2017Date of Patent: August 22, 2023Assignee: EMULATE, INC.Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Patent number: 11549937Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: GrantFiled: July 12, 2017Date of Patent: January 10, 2023Assignee: EMULATE, INC.Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Patent number: 11536714Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: GrantFiled: July 12, 2017Date of Patent: December 27, 2022Assignee: EMULATE, INC.Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Patent number: 11519903Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: GrantFiled: July 12, 2017Date of Patent: December 6, 2022Assignee: EMULATE, INC.Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Patent number: 11506653Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: GrantFiled: July 12, 2017Date of Patent: November 22, 2022Assignee: EMULATE, INC.Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Patent number: 11506652Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.Type: GrantFiled: July 12, 2017Date of Patent: November 22, 2022Assignee: EMULATE, INC.Inventors: Daniel Levner, Kyung JIn Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
-
Publication number: 20220340849Abstract: The invention relates to modeling brain neuronal disease in a microfluidic device, comprising a co-culture of iPS-derived brain endothelial cells; iPS-derived dopaminergic neurons; primary microglia; and primary astrocytes, a Blood-Brain-Barrier (BBB)-Chip and a Brain-Chip. In particular, cross-talk between glial cells (e.g. microglia and astrocytes) with neuronal cells, in further contact with endothelial cells is contemplated for use for identifying drug targets under conditions for inducing in vivo relevant neuronal inflammation, neurodegeneration and neuronal death. Thus, in one embodiment, a microfluidic Brain-Chip comprising a co-culture of brain cells is exposed to ?-synuclein preformed fibrils (PFF), a type of pathogenic form of ?-synuclein. Such ?-synuclein PFF exposure demonstrates an in vivo relevant disease pathogenesis on a microfluidic device as a concentration- and time-controlled manner that may be used for preclinical drug evaluation for diseases related to neuronal inflammation, e.g.Type: ApplicationFiled: April 13, 2022Publication date: October 27, 2022Inventors: Iosif Pediaditakis, William R. Tien-Street, S. Jordan Kerns, Geraldine Hamilton, Daniel Levner