Patents by Inventor Søren Vestergaard Rasmussen

Søren Vestergaard Rasmussen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250116656
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: October 20, 2023
    Publication date: April 10, 2025
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Veronica COSTA, Maj HEDTJÄRN, Marius HOENER, Ravi JAGASIA, Mads Aaboe JENSEN, Christoph PATSCH, Lykke PEDERSEN, Søren Vestergaard RASMUSSEN
  • Patent number: 12259380
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD1091B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: March 25, 2025
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Publication number: 20240085402
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: October 20, 2023
    Publication date: March 14, 2024
    Inventors: Veronica COSTA, Maj HEDTJÄRN, Marius HOENER, Ravi JAGASIA, Mads Aaboe JENSEN, Christoph PATSCH, Lykke PEDERSEN, Søren Vestergaard RASMUSSEN
  • Patent number: 11852627
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: December 26, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Publication number: 20230296587
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD1091B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: February 22, 2023
    Publication date: September 21, 2023
    Inventors: Veronica COSTA, Maj HEDTJÄRN, Marius HOENER, Ravi JAGASIA, Mads Aaboe JENSEN, Christoph PATSCH, Lykke PEDERSEN, Søren Vestergaard RASMUSSEN
  • Publication number: 20220146496
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Inventors: Veronica Costa, Maj HEDTJÄRN, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Patent number: 11320421
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: May 3, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Patent number: 11286485
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: March 29, 2022
    Assignee: HOFFMANN-LA ROCHE INC.
    Inventors: Peter Hagedorn, Dennis Jul Hansen, Heidi Rye Hudlebusch, Lykke Pedersen, Søren Vestergaard Rasmussen, Mette Ladefoged
  • Publication number: 20210024925
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Application
    Filed: April 3, 2020
    Publication date: January 28, 2021
    Inventors: Peter Hagedorn, Dennis Jul Hansen, Heidi Rye Hudlebusch, Lykke Pedersen, Søren Vestergaard Rasmussen, Mette Ladefoged
  • Publication number: 20200348286
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Veronica Costa, Maj HEDTJÄRN, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Patent number: 10739332
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: August 11, 2020
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Patent number: 10718753
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: July 21, 2020
    Assignee: Hoffman-La Roche Inc.
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Publication number: 20200057052
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Patent number: 10494633
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: December 3, 2019
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Veronica Costa, Maj Hedtjärn, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Publication number: 20190310244
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 10, 2019
    Inventors: Veronica Costa, Maj HEDTJÄRN, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Publication number: 20170191064
    Abstract: The present invention relates to oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA downstream of SNORD109B. The present invention further relates to pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Application
    Filed: November 14, 2016
    Publication date: July 6, 2017
    Inventors: Veronica Costa, Maj HEDTJÄRN, Marius Hoener, Ravi Jagasia, Mads Aaboe Jensen, Christoph Patsch, Lykke Pedersen, Søren Vestergaard Rasmussen
  • Patent number: 8048998
    Abstract: The present invention relates to novel modified oligomeric compounds and to methods of making and using such compounds. The invention further relates to methods of enhancing the cellular uptake of oligomeric compounds comprising conjugating a metal chelator to those.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: November 1, 2011
    Assignee: Exiqon A/S
    Inventors: Soeren Vestergaard Rasmussen, Torsten Bryld, Soeren Moeller
  • Publication number: 20100261175
    Abstract: The present invention relates to functional analysis of miRNAs or other short non-coding RNAs involving the use of two or more sequence distinct miRNAs antagonising oligomeric compounds, which enables the reagent redundancy experiments to reduce the risk of reporting false positive effects of miRNA/ncRNA antagonists.
    Type: Application
    Filed: June 12, 2008
    Publication date: October 14, 2010
    Applicant: Exiqon A/S
    Inventors: Soeren Vestergaard Rasmussen, Soeren Moeller, Torsten Bryld
  • Publication number: 20100035968
    Abstract: The present invention relates to novel modified oligomeric compounds and to methods of making and using such compounds. The invention further relates to methods of enhancing the cellular uptake of oligomeric compounds comprising conjugating a metal chelator to those.
    Type: Application
    Filed: January 18, 2008
    Publication date: February 11, 2010
    Applicant: Exiqon A/S
    Inventors: Soeren Vestergaard Rasmussen, Torsten Bryld, Soeren Moeller
  • Publication number: 20040248083
    Abstract: The present invention relates to improved vectors useful in gene therapy which improvement particularly resides in improved safety of such vectors. The improvement is achieved by incorporating sequences into the gene therapy vector which promote dimer formation of transcripts derived from said vector. Such sequences are in a preferred embodiment self-complementary palindromic or nonpalindromic sequences.
    Type: Application
    Filed: June 7, 2004
    Publication date: December 9, 2004
    Inventors: Jacob Giehm Mikkelsen, Soeren Vestergaard Rasmussen, Mogens Duch, Finn Skou Pedersen, Lars Aagaard