Patents by Inventor Sachin Bharadwaj

Sachin Bharadwaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11662455
    Abstract: A radar data processing device includes at least one analog-to-digital converter (ADC) configured to digitize a plurality of input signals, wherein each input signal includes radar chirp and radar chirp reflection information received at one of a plurality of receiver antennas. The radar data processing device also includes Fast Fourier Transform (FFT) logic configured to generate FFT output samples based on each digitized input signal, wherein at least some of the generated FFT output samples are across antenna FFT output samples associated with at least two of the plurality of receiver antennas. The radar data processing device also includes a processor configured to determine a plurality of object parameters based on at least some of the generated FFT output samples, wherein the processor uses a neural network classifier trained to provide a confidence metric for at least one of the plurality of object parameters.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: May 30, 2023
    Assignee: Texas Instmments Incorporated
    Inventors: Sachin Bharadwaj, Sandeep Rao
  • Patent number: 11650285
    Abstract: The disclosure provides a radar apparatus. The radar apparatus includes a transmit unit that generates a first signal in response to a reference clock and a feedback clock. The first signal is scattered by one or more obstacles to generate a second signal. A receive unit receives the second signal and generates N samples corresponding to the second signal. N is an integer. A conditioning circuit is coupled to the transmit unit and the receive unit. The conditioning circuit receives the N samples corresponding to the second signal, and generates N new samples using an error between the feedback clock and the reference clock.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 16, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sachin Bharadwaj, Karthik Subburaj
  • Patent number: 11579284
    Abstract: A radar system is provided that includes transmission signal generation circuitry, a transmit channel coupled to the transmission generation circuitry to receive a continuous wave test signal, the transmit channel configurable to output a test signal based on the continuous wave signal in which a phase angle of the test signal is changed in discrete steps within a phase angle range, a receive channel coupled to the transmit channel via a feedback loop to receive the test signal, the receive channel including an in-phase (I) channel and a quadrature (Q) channel, a statistics collection module configured to collect energy measurements of the test signal output by the I channel and the test signal output by the Q channel at each phase angle, and a processor configured to estimate phase and gain imbalance of the I channel and the Q channel based on the collected energy measurements.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: February 14, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sachin Bharadwaj, Karthik Subburaj, Sriram Murali
  • Patent number: 11520004
    Abstract: According to an aspect, method of enhancing a resolution in a radar system having an antenna aperture comprises measuring a first radiation pattern corresponding to a first set of receiving antennas by feeding a known radio frequency (RF) signal over the first set of receiving antennas, wherein the first set of radiation due to an impairment, coherently combining an interpolated radiation pattern with a received radar signal received by the set of receiving antenna when employed for an object detection, to generate a high signal to noise ratio (SNR) received signal, and iteratively combining the high SNR received signal with the interpolated signal to reduce the error due to the impairment.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 6, 2022
    Inventors: Sachin Bharadwaj, Sai Gunaranjan Pelluri, Sumeer Bhatara, Apu Sivadas
  • Patent number: 11204647
    Abstract: A method for gesture recognition includes receiving, by a processor, a first digital intermediate frequency (IF) signal stream from a first receive antenna and receiving, by the processor, a second digital IF signal stream from a second receive antenna. The method also includes computing, by the processor, a weighted Doppler metric stream based on the first digital IF signal stream and the second digital IF signal stream and computing, by the processor, an angle metric stream based on the first digital IF signal stream and the second digital IF signal stream. Additionally, the method includes computing, by the processor, a correlation between the weighted Doppler metric stream and the angle metric stream, to generate a first correlation and recognizing, by the processor, a gesture, based on the first correlation.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 21, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Rao, Sachin Bharadwaj, Piyali Goswami
  • Publication number: 20210364624
    Abstract: A radar data processing device includes at least one analog-to-digital converter (ADC) configured to digitize a plurality of input signals, wherein each input signal includes radar chirp and radar chirp reflection information received at one of a plurality of receiver antennas. The radar data processing device also includes Fast Fourier Transform (FFT) logic configured to generate FFT output samples based on each digitized input signal, wherein at least some of the generated FFT output samples are across antenna FFT output samples associated with at least two of the plurality of receiver antennas. The radar data processing device also includes a processor configured to determine a plurality of object parameters based on at least some of the generated FFT output samples, wherein the processor uses a neural network classifier trained to provide a confidence metric for at least one of the plurality of object parameters.
    Type: Application
    Filed: February 24, 2021
    Publication date: November 25, 2021
    Inventors: Sachin BHARADWAJ, JR., Sandeep RAO
  • Publication number: 20210286066
    Abstract: A multi-mode radar system, radar signal processing methods and configuration methods, including using predetermined, range/mode-specific pushing windows to perform windowing on range and velocity object data before performing an FFT on the windowed object data matrix to generate a three-dimensional object matrix including range, velocity and angle data. The individual windows have an angular spectral response that corresponds to a combined angular coverage field of view of the transmit and receive antennas for the corresponding mode to minimize the total weighted energy outside the main lobe and to provide increasing spectral leakage outside the combined angular coverage field of view with angular offset from the main lobe to push out much of the spectral leakage into regions where leakage tolerance is high due to the corresponding combined angular coverage field of view of the transmit and receive antennas.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 16, 2021
    Inventors: Sachin Bharadwaj, Sriram Murali
  • Publication number: 20210255279
    Abstract: A method of operating a frequency modulated continuous wave (FMCW) radar system includes receiving, by at least one processor, digital intermediate frequency (IF) signals from a mixer coupled to a receive antenna. The method also includes computing, by the at least one processor, a motion metric based on the digital IF signals; operating, by the at least one processor, the FMCW radar system in a classification mode, in response to determining that the motion metric is above a threshold; and operating, by the at least one processor, the FMCW radar system in a detection mode, in response to determining that the motion metric is below the threshold for at least a first amount of time. An amount of power consumed by the FMCW radar system in the detection mode is less than an amount of power consumed by the FMCW radar system in the classification mode.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Piyali GOSWAMI, Sandeep RAO, Sachin BHARADWAJ
  • Patent number: 11047970
    Abstract: A multi-mode radar system, radar signal processing methods and configuration methods, including using predetermined, range/mode-specific pushing windows to perform windowing on range and velocity object data before performing an FFT on the windowed object data matrix to generate a three-dimensional object matrix including range, velocity and angle data. The individual windows have an angular spectral response that corresponds to a combined angular coverage field of view of the transmit and receive antennas for the corresponding mode to minimize the total weighted energy outside the main lobe and to provide increasing spectral leakage outside the combined angular coverage field of view with angular offset from the main lobe to push out much of the spectral leakage into regions where leakage tolerance is high due to the corresponding combined angular coverage field of view of the transmit and receive antennas.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: June 29, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sachin Bharadwaj, Sriram Murali
  • Publication number: 20210141053
    Abstract: According to an aspect, method of enhancing a resolution in a radar system having an antenna aperture comprises measuring a first radiation pattern corresponding to a first set of receiving antennas by feeding a known radio frequency (RF) signal over the first set of receiving antennas, wherein the first set of radiation due to an impairment, coherently combining an interpolated radiation pattern with a received radar signal received by the set of receiving antenna when employed for an object detection, to generate a high signal to noise ratio (SNR) received signal, and iteratively combining the high SNR received signal with the interpolated signal to reduce the error due to the impairment.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 13, 2021
    Applicant: Steradian Semiconductors Private Limited
    Inventors: Sachin Bharadwaj, Sai Gunaranjan Pelluri, Sumeer Bhatara, Apu Sivadas
  • Patent number: 10996313
    Abstract: A method of operating a frequency modulated continuous wave (FMCW) radar system includes receiving, by at least one processor, digital intermediate frequency (IF) signals from a mixer coupled to a receive antenna. The method also includes computing, by the at least one processor, a motion metric based on the digital IF signals; operating, by the at least one processor, the FMCW radar system in a classification mode, in response to determining that the motion metric is above a threshold; and operating, by the at least one processor, the FMCW radar system in a detection mode, in response to determining that the motion metric is below the threshold for at least a first amount of time. An amount of power consumed by the FMCW radar system in the detection mode is less than an amount of power consumed by the FMCW radar system in the classification mode.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 4, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Piyali Goswami, Sandeep Rao, Sachin Bharadwaj
  • Patent number: 10962637
    Abstract: A radar data processing device includes at least one analog-to-digital converter (ADC) configured to digitize a plurality of input signals, wherein each input signal includes radar chirp and radar chirp reflection information received at one of a plurality of receiver antennas. The radar data processing device also includes Fast Fourier Transform (FFT) logic configured to generate FFT output samples based on each digitized input signal, wherein at least some of the generated FFT output samples are across antenna FFT output samples associated with at least two of the plurality of receiver antennas. The radar data processing device also includes a processor configured to determine a plurality of object parameters based on at least some of the generated FFT output samples, wherein the processor uses a neural network classifier trained to provide a confidence metric for at least one of the plurality of object parameters.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 30, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sachin Bharadwaj, Jr., Sandeep Rao
  • Publication number: 20210026005
    Abstract: A radar system is provided that includes transmission signal generation circuitry, a transmit channel coupled to the transmission generation circuitry to receive a continuous wave test signal, the transmit channel configurable to output a test signal based on the continuous wave signal in which a phase angle of the test signal is changed in discrete steps within a phase angle range, a receive channel coupled to the transmit channel via a feedback loop to receive the test signal, the receive channel including an in-phase (I) channel and a quadrature (Q) channel, a statistics collection module configured to collect energy measurements of the test signal output by the I channel and the test signal output by the Q channel at each phase angle, and a processor configured to estimate phase and gain imbalance of the I channel and the Q channel based on the collected energy measurements.
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Inventors: Sachin Bharadwaj, Karthik Subburaj, Sriram Murali
  • Patent number: 10816655
    Abstract: A radar system is provided that includes transmission signal generation circuitry, a transmit channel coupled to the transmission generation circuitry to receive a continuous wave test signal, the transmit channel configurable to output a test signal based on the continuous wave signal in which a phase angle of the test signal is changed in discrete steps within a phase angle range, a receive channel coupled to the transmit channel via a feedback loop to receive the test signal, the receive channel including an in-phase (I) channel and a quadrature (Q) channel, a statistics collection module configured to collect energy measurements of the test signal output by the I channel and the test signal output by the Q channel at each phase angle, and a processor configured to estimate phase and gain imbalance of the I channel and the Q channel based on the collected energy measurements.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 27, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Sachin Bharadwaj, Karthik Subburaj, Sriram Murali
  • Publication number: 20200132811
    Abstract: A method of operating a frequency modulated continuous wave (FMCW) radar system includes receiving, by at least one processor, digital intermediate frequency (IF) signals from a mixer coupled to a receive antenna. The method also includes computing, by the at least one processor, a motion metric based on the digital IF signals; operating, by the at least one processor, the FMCW radar system in a classification mode, in response to determining that the motion metric is above a threshold; and operating, by the at least one processor, the FMCW radar system in a detection mode, in response to determining that the motion metric is below the threshold for at least a first amount of time. An amount of power consumed by the FMCW radar system in the detection mode is less than an amount of power consumed by the FMCW radar system in the classification mode.
    Type: Application
    Filed: October 29, 2018
    Publication date: April 30, 2020
    Inventors: Piyali GOSWAMI, Sandeep RAO, Sachin BHARADWAJ
  • Publication number: 20190391251
    Abstract: A radar data processing device includes at least one analog-to-digital converter (ADC) configured to digitize a plurality of input signals, wherein each input signal includes radar chirp and radar chirp reflection information received at one of a plurality of receiver antennas. The radar data processing device also includes Fast Fourier Transform (FFT) logic configured to generate FFT output samples based on each digitized input signal, wherein at least some of the generated FFT output samples are across antenna FFT output samples associated with at least two of the plurality of receiver antennas. The radar data processing device also includes a processor configured to determine a plurality of object parameters based on at least some of the generated FFT output samples, wherein the processor uses a neural network classifier trained to provide a confidence metric for at least one of the plurality of object parameters.
    Type: Application
    Filed: November 29, 2018
    Publication date: December 26, 2019
    Inventors: Sachin BHARADWAJ, JR., Sandeep RAO
  • Publication number: 20190087009
    Abstract: A method for gesture recognition includes receiving, by a processor, a first digital intermediate frequency (IF) signal stream from a first receive antenna and receiving, by the processor, a second digital IF signal stream from a second receive antenna. The method also includes computing, by the processor, a weighted Doppler metric stream based on the first digital IF signal stream and the second digital IF signal stream and computing, by the processor, an angle metric stream based on the first digital IF signal stream and the second digital IF signal stream. Additionally, the method includes computing, by the processor, a correlation between the weighted Doppler metric stream and the angle metric stream, to generate a first correlation and recognizing, by the processor, a gesture, based on the first correlation.
    Type: Application
    Filed: April 13, 2018
    Publication date: March 21, 2019
    Inventors: Sandeep Rao, Sachin Bharadwaj, Piyali Goswami
  • Publication number: 20190004167
    Abstract: The disclosure provides a radar apparatus for estimating a range of an obstacle. The radar apparatus includes a local oscillator that generates a first ramp segment and a second ramp segment. The first ramp segment and the second ramp segment each includes a start frequency, a first frequency and a second frequency. The first frequency of the second ramp segment is equal to or greater than the second frequency of the first ramp segment when a slope of the first ramp segment and a slope of the second ramp segment are equal and positive. The first frequency of the second ramp segment is equal to or less than the second frequency of the first ramp segment when the slope of the first ramp segment and the slope of the second ramp segment are equal and negative.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: Sandeep Rao, Karthik Subburaj, Brian Ginsburg, Karthik Ramasubramanian, Jawaharlal Tangudu, Sachin Bharadwaj
  • Publication number: 20180321368
    Abstract: A multi-mode radar system, radar signal processing methods and configuration methods, including using predetermined, range/mode-specific pushing windows to perform windowing on range and velocity object data before performing an FFT on the windowed object data matrix to generate a three-dimensional object matrix including range, velocity and angle data. The individual windows have an angular spectral response that corresponds to a combined angular coverage field of view of the transmit and receive antennas for the corresponding mode to minimize the total weighted energy outside the main lobe and to provide increasing spectral leakage outside the combined angular coverage field of view with angular offset from the main lobe to push out much of the spectral leakage into regions where leakage tolerance is high due to the corresponding combined angular coverage field of view of the transmit and receive antennas.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 8, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Sachin Bharadwaj, Sriram Murali
  • Publication number: 20180321359
    Abstract: The disclosure provides a radar apparatus. The radar apparatus includes a transmit unit that generates a first signal in response to a reference clock and a feedback clock. The first signal is scattered by one or more obstacles to generate a second signal. A receive unit receives the second signal and generates N samples corresponding to the second signal. N is an integer. A conditioning circuit is coupled to the transmit unit and the receive unit. The conditioning circuit receives the N samples corresponding to the second signal, and generates N new samples using an error between the feedback clock and the reference clock.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 8, 2018
    Inventors: Sachin Bharadwaj, Karthik Subburaj