Patents by Inventor Said Rizk

Said Rizk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10722345
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 28, 2020
    Assignee: TEPHA, INC.
    Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta, Antonio Fosco, David P. Martin, Simon F. Williams
  • Publication number: 20200197712
    Abstract: Nonwoven resorbable pouches that at least partially enclose implantable medical devices and improved methods for producing the implantable medical device pouches are described. The nonwoven pouches may comprise one or more drugs. Implantable medical devices that are placed in the pouches prior to implantation are prevented from migrating from the site of implantation by tissue ingrowth into the pouch. Antibiotics may be incorporated into the pouches to prevent post-operative infections. The pouches may be formed in fewer steps than conventional pouches, and without polymer coatings. Nonwoven pouches can be formed in one step by dry spinning instead of using multiple processing steps. In embodiments, the nonwoven pouches are smoother on the inside than the outside to tightly fit the implantable medical devices internally while encouraging external tissue ingrowth.
    Type: Application
    Filed: August 28, 2019
    Publication date: June 25, 2020
    Inventors: Skander LIMEM, David Martin, Said Rizk, Simon F. Williams
  • Patent number: 10689498
    Abstract: Methods to produce substantially closed cell foams with densities less than 0.75 g/cm3, and more preferably less than 0.5 g/cm3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 23, 2020
    Assignee: Tepha, Inc.
    Inventors: Dennis Connelly, Fabio Felix, David P. Martin, Jon Montcrieff, Said Rizk, Simon F. Williams
  • Publication number: 20200179559
    Abstract: Absorbable monofilament fibers and self-retaining sutures with high tensile strengths have been developed. The straight pull tensile strengths of the absorbable self-retaining sutures closely approximate, equal or exceed the average minimum knot-pull tensile standards set by the United States Pharmacopeia (USP). These higher strength absorbable self-retaining sutures can therefore be used either without needing to oversize the suture for a given procedure, or by oversizing the self-retaining suture by no more than 0.1 mm in diameter. In one embodiment, the absorbable self-retaining sutures are made from poly-4-hydroxybutyrate or copolymers thereof. Methods for producing absorbable self-retaining sutures that have high tensile strengths and pronounced sheath-core structures wherein the sheath is harder than the core are also provided.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Said Rizk, Simon F. Williams
  • Publication number: 20200139018
    Abstract: Oriented resorbable implants made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof, have been developed that contain one or more antimicrobial agents to prevent colonization of the implants, and reduce or prevent the occurrence of infection following implantation in a patient. These oriented implants are particularly suitable for use in procedures where prolonged strength retention is necessary and there is a risk of infection. Coverings and receptacles made from poly-4-hydroxybutyrate and copolymers thereof, containing antimicrobial agents, have also been developed for use with implantable devices to prevent colonization of these devices, and to reduce or prevent the occurrence of infection following implantation of these devices in a patient. These coverings and receptacles may be used to hold, or partially or fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: David P. Martin, Said Rizk, Simon F. Williams, Arikha Moses
  • Patent number: 10626521
    Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications, including mesh sutures.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: April 21, 2020
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, Bhavin Shah, Amit Ganatra, Skander Limem, David P. Martin, Simon F. Williams
  • Publication number: 20200100892
    Abstract: Breast fixation devices for use in breast reconstruction and breast augmentation limit the rotation or movement of breast implants after implantation that results in an unnatural appearance of the breast. The breast fixation devices can include a thin-walled enclosure in the shape of a pouch. A breast implant is secured inside the pouch to limit movement by applying compression to the breast implants, or using a mating or interlocking mechanism between the pouch and breast implant. The pouches containing the breast implants are implanted in the breast. Tissue in-growth into the pouch limits movement of the pouch-breast implant assembly and thereby limits rotation, migration, and displacement of the breast implant. The pouches preferably comprise poly-4-hydroxybutyrate or copolymer thereof.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 2, 2020
    Applicant: Tepha, Inc.
    Inventors: Skander LIMEM, Kristin Crescenzi, Said RIZK, Simon F. WILLIAMS
  • Patent number: 10590566
    Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 17, 2020
    Assignee: Tepha, Inc.
    Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
  • Patent number: 10568728
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: February 25, 2020
    Assignee: Tepha, Inc.
    Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
  • Patent number: 10532127
    Abstract: Methods to produce perforated collagen coated meshes for use as implants have been developed. The method involves positioning needles through the pores of the mesh, coating the mesh with a collagen solution, freezing the coated mesh, removing the needles from the frozen coated mesh, drying the collagen coated mesh, and optionally cross-linking the coated mesh. The method allows perforated collagen coated meshes to be prepared with variable thickness, and without damage to the surface of the mesh. The perforations of the collagen coated meshes may be designed to prevent the formation of fluid pockets when the coated meshes are implanted, and to permit rapid incorporation into host tissue. The perforated collagen coated meshes may be used for soft tissue repair, regeneration or remodeling including, for example, hernia repair, mastopexy, treatment of urinary incontinence, pelvic floor reconstruction, and ligament and tendon repair.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: January 14, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Bhavin Shah, Said Rizk
  • Patent number: 10525172
    Abstract: Oriented resorbable implants made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof, have been developed that contain one or more antimicrobial agents to prevent colonization of the implants, and reduce or prevent the occurrence of infection following implantation in a patient. These oriented implants are particularly suitable for use in procedures where prolonged strength retention is necessary and there is a risk of infection. Coverings and receptacles made from poly-4-hydroxybutyrate and copolymers thereof, containing antimicrobial agents, have also been developed for use with implantable devices to prevent colonization of these devices, and to reduce or prevent the occurrence of infection following implantation of these devices in a patient. These coverings and receptacles may be used to hold, or partially or fully cover, devices such as pacemakers and neurostimulators.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: January 7, 2020
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Simon F. Williams, Arikha Moses
  • Publication number: 20190375149
    Abstract: Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 12, 2019
    Inventors: Skander Limem, Reshad Bin Harun, Matthew Dubois, David P. Martin, Said Rizk
  • Patent number: 10500303
    Abstract: Absorbable monofilament fibers and self-retaining sutures with high tensile strengths have been developed. The straight pull tensile strengths of the absorbable self-retaining sutures closely approximate, equal or exceed the average minimum knot-pull tensile standards set by the United States Pharmacopeia (USP). These higher strength absorbable self-retaining sutures can therefore be used either without needing to oversize the suture for a given procedure, or by oversizing the self-retaining suture by no more than 0.1 mm in diameter. In one embodiment, the absorbable self-retaining sutures are made from poly-4-hydroxybutyrate or copolymers thereof. Methods for producing absorbable self-retaining sutures that have high tensile strengths and pronounced sheath-core structures wherein the sheath is harder than the core are also provided.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 10, 2019
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, Simon F. Williams
  • Publication number: 20190314130
    Abstract: Resorbable three-dimensional implants that can be temporarily deformed, implanted by minimally invasive means, and resume their original shape in vivo, have been developed. These implants are particularly suitable for use in minimally invasive procedures for tissue reinforcement, repair of hernias, and applications where it is desirable for the implant to contour in vivo to an anatomical shape, such as the inguinofemoral region. In the preferred embodiment, the implants are made from meshes of poly-4-hydroxybutyrate monofilament that have reinforced outlying borders that allow the meshes to form three-dimensional shapes that can be temporarily deformed. These implants can resume three-dimensional shapes after being temporarily deformed that contour to the host's tissue or an anatomical shape, for example, in the repair of a hernia, and particularly a hernia in the inguinofemoral region.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 17, 2019
    Inventors: Said Rizk, Amit Ganatra, Antonio Fosco, David P. Martin, Simon F. Williams
  • Publication number: 20190269816
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Publication number: 20190269817
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Patent number: D870289
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: December 17, 2019
    Assignee: Tepah, Inc.
    Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
  • Patent number: D888244
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: June 23, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
  • Patent number: D889654
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 7, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams
  • Patent number: D889655
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 7, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams