Patents by Inventor Sameh Asaad

Sameh Asaad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130070606
    Abstract: Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Sameh Asaad, Bernard V. Brezzo, Mohit Kapur
  • Publication number: 20110219208
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC).
    Type: Application
    Filed: January 10, 2011
    Publication date: September 8, 2011
    Applicant: International Business Machines Corporation
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Brian Smith, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Publication number: 20060288191
    Abstract: A method for adaptive runtime reconfiguration of a co-processor instruction set, in a computer system with at least a main processor communicatively connected to at least one reconfigurable co-processor, includes the steps of configuring the co-processor to implement an instruction set comprising one or more co-processor instructions, issuing a co-processor instruction to the co-processor, and determining whether the instruction is implemented in the co-processor. For an instruction not implemented in the co-processor instruction set, raising a stall signal to delay the main processor, determining whether there is enough space in the co-processor for the non-implemented instruction, and if there is enough space for said instruction, reconfiguring the instruction set of the co-processor by adding the non-implemented instruction to the co-processor instruction set. The stall signal is cleared and the instruction is executed.
    Type: Application
    Filed: August 23, 2006
    Publication date: December 21, 2006
    Inventors: Sameh Asaad, Richard Hofmann
  • Patent number: 7051186
    Abstract: A multi-port register file may be selectively bypassed such that any element in a result vector is bypassed to the same index of an input vector of a succeeding operation when the element is requested in the succeeding operation in the same index as it was generated. Alternatively, the results to be placed in a register file may be bypassed to a succeeding operation when the N elements that dynamically compose a vector are requested as inputs to the next operation exactly in the same order as they were generated. That is, for the purposes of bypassing, the N vector elements are treated as a single entity. Similar rules apply for the write-through path.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: May 23, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sameh Asaad, Jaime H. Moreno, Victor Zyuban
  • Publication number: 20060004987
    Abstract: A method for adaptive runtime reconfiguration of a co-processor instruction set, in a computer system with at least a main processor communicatively connected to at least one reconfigurable co-processor, includes the steps of configuring the co-processor to implement an instruction set comprising one or more co-processor instructions, issuing a co-processor instruction to the co-processor, and determining whether the instruction is implemented in the co-processor. For an instruction not implemented in the co-processor instruction set, raising a stall signal to delay the main processor, determining whether there is enough space in the co-processor for the non-implemented instruction, and if there is enough space for said instruction, reconfiguring the instruction set of the co-processor by adding the non-implemented instruction to the co-processor instruction set. The stall signal is cleared and the instruction is executed.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Sameh Asaad, Richard Hofmann
  • Publication number: 20050015537
    Abstract: A system for instruction memory storage and processing in a computing device having a processor, the system is based on backwards branch control information and comprises a dynamic loop buffer (DLB) which is a tagless array of data organized as a direct-mapped structure; a DLB controller having a primary memory unit partitioned into a plurality of banks for controlling the state of the instruction memory system and accepting a program counter address as an input, the DLB controller outputs distinct signals. The system further comprises an address register located in the memory of the computing device, it is a staging register for the program counter address and an instruction fetch process that takes two cycles of the processor clock; and a bank select unit for serving as a program counter address decoder to accept the program counter address and to output a bank enable signal for selecting a bank in a primary memory unit, and a decoded address for access within the selected bank.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 20, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sameh Asaad, Jaime Moreno, Jude Rivers, John-David Wellman
  • Publication number: 20040044882
    Abstract: A multi-port register file may be selectively bypassed such that any element in a result vector is bypassed to the same index of an input vector of a succeeding operation when the element is requested in the succeeding operation in the same index as it was generated. Alternatively, the results to be placed in a register file may be bypassed to a succeeding operation when the N elements that dynamically compose a vector are requested as inputs to the next operation exactly in the same order as they were generated. That is, for the purposes of bypassing, the N vector elements are treated as a single entity. Similar rules apply for the write-through path.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Applicant: International Business Machines Corporation
    Inventors: Sameh Asaad, Jaime H. Moreno, Victor Zyuban