Patents by Inventor Samuel H. Smith

Samuel H. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10299796
    Abstract: Described herein are endoscopic plicators passed transorally into the stomach and used to plicate stomach tissue by engaging tissue from inside of the stomach and drawing it inwardly. In the disclosed embodiments, the tissue is drawn inwardly into a vacuum chamber, causing sections of serosal tissue on the exterior of the stomach to be positioned facing one another. The disclosed plicators allow the opposed sections of tissue to be moved into contact with one another, and preferably deliver sutures, staples or other means for maintaining contact between the tissue sections at least until serosal bonds form between them. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention. After one or more plications is formed, medical devices may be coupled to the plication(s) for retention within the stomach.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: May 28, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Daniel J. Balbierz, David H. Cole, Samuel T. Crews, Bretton Swope, Andrew C. Smith, John P. Lunsford, Fiona Sander
  • Patent number: 10305581
    Abstract: Systems and methods are described herein for performing mispointing correction operations that can provide accurate pointing of an antenna towards a satellite, while also satisfying interference requirements with other satellites. As a result, the mispointing correction operations described herein can improve resource efficiency of communication systems using such antennas and help ensure compliance with interference requirements of other satellites.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: May 28, 2019
    Assignee: Viasat, Inc.
    Inventors: James E Petranovich, Bradley H Smith, Eric L Cross, Douglas J Merrell, Samuel C Finney
  • Patent number: 7890508
    Abstract: Mechanisms and techniques for database fragment cloning and management are provided. A database object, such as a table, rowset or index, is divided into fragments. Each fragment is cloned to create cloned fragments, which operationally are substantially identical to one another. One or more of the cloned fragments may be designated as a primary cloned fragment for performing database operations or as a secondary cloned fragment for serving as backup. Updates to each fragment are implemented on the primary cloned fragment and are then propagated from the primary cloned fragment to the corresponding secondary cloned fragments. A cloned fragment can go offline, becoming unavailable to be updated. When the cloned fragment returns online, the cloned fragment is refreshed with data included in the primary cloned fragment. While being refreshed, the cloned fragment may continue to be updated.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: February 15, 2011
    Assignee: Microsoft Corporation
    Inventors: Robert H. Gerber, Balan Sethu Raman, James R. Hamilton, John F. Ludeman, Murali M. Krishna, Samuel H. Smith, Shrinivas Ashwin
  • Patent number: 6356887
    Abstract: An auto-parameterization process transforms a database query into a parameterized basic query form by replacing any constant values in the query with parameters. The auto-parameterization process attempts to generate a safe execution plan from the basic query form if there is currently no such plan available. A safe execution plan is defined as an execution plan that is optimal over a range of values for the parameters. If a safe execution plan can be generated, it is passed for execution, along with the constant values that were present in the query. If a safe execution plan cannot be generated, the auto-parameterization process passes a specific execution plan for execution. The safe execution plan is cached either at the time it is created or at the time it is executed. The cache is searched each time a parameterized basic query plan is generated by the auto-parameterization process.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: March 12, 2002
    Assignee: Microsoft Corporation
    Inventors: Harold R. Berenson, Peter A. Carlin, Nigel R. Ellis, Cesar A. Galindo-Legaria, Goetz Graefe, Ajay Kalhan, Craig C. Peeper, Samuel H. Smith
  • Patent number: 5598183
    Abstract: A system determining an intended cursor location on the computer display screen and automatically repositions the cursor at the intended location. If the user selects a command that alters the contents of the display, such as opening a new window, the system analyzes the new screen display to determine whether there are user selectable options associated with the new screen display. The system determines if one of the user selectable options is a default option and automatically positions the cursor at the default option. If the new screen display is an application program, the system attempts to locate a user selectable option and repositions the cursor at the user selectable option. When the new window is closed, the system returns the cursor to the position it was at before the new window was opened. The system also predicts an intended location for a screen display that has not been altered, and automatically positions the cursor at the intended location.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: January 28, 1997
    Assignee: Microsoft Corporation
    Inventors: Kenneth R. Robertson, Paul E. Henderson, Jr., Samuel H. Smith, Carl T. Hellings, James A. Andrews, Eric W. Hanson, Timothy T. Brewer, Teresa L. Kelsey, Anthony R. Claflin, Daniel S. Hoeger, Lora K. McCambridge
  • Patent number: 5596347
    Abstract: A system determining an intended cursor location on the computer display screen and automatically repositions the cursor at the intended location. If the user selects a command that alters the contents of the display, such as opening a new window, the system analyzes the new screen display to determine whether there are user selectable options associated with the new screen display. The system determines if one of the user selectable options is a default option and automatically positions the cursor at the default option. If the new screen display is an application program, the system attempts to locate a user selectable option and repositions the cursor at the user selectable option. When the new window is closed, the system returns the cursor to the position it was at before the new window was opened. The system also predicts an intended location for a screen display that has not been altered, and automatically positions the cursor at the intended location.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: January 21, 1997
    Assignee: Microsoft Corporation
    Inventors: Kenneth R. Robertson, Paul E. Henderson, Jr., Samuel H. Smith, Carl T. Hellings, James A. Andrews, Eric W. Hanson, Timothy T. Brewer, Teresa L. Kelsey, Anthony R. Claflin, Daniel S. Hoeger, Lora K. McCambridge
  • Patent number: 5561259
    Abstract: A decoy flare with a sequenced ignition is disclosed. The flare comprises a case including an aperture for an impulse cartridge, a segment of pyrotechnic material and a sequencer igniter. The sequencer igniter includes a housing having an aperture, an ignition pellet and an interrupt positioned to cover the aperture when the sequencer igniter is in the case thereby separating the ignition pellet and the pyrotechnic material. When the impulse cartridge is ignited the segment of pyrotechnic material and the sequencer igniter move out of the case, the ignition pellet is ignited, the interrupt moves to uncover the aperture and the segment of pyrotechnic material is ignited.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: October 1, 1996
    Assignee: Alliant Techsystems Inc.
    Inventors: David W. Herbage, Samuel H. Smith
  • Patent number: 5072416
    Abstract: A double cycle prover is used to calibrate meters which require long proving runs. A small volume or piston prover and a master flowmeter, are coupled in series with the meter under test, then the master flowmeter is calibrated against the small volume prover, and the meter under test is calibrated against the master flowmeter. A signal processor combines the proving cycles, to relate the small volume prover to the meter under test. A density meter is connected to the flow channel, if the meter under test is a mass flowmeter, and the signal processor uses the density measurement to relate the mass flow measurement of the meter under test with the volume flow measurement of the master flowmeter.
    Type: Grant
    Filed: March 19, 1990
    Date of Patent: December 10, 1991
    Assignee: Calibron Systems, Inc.
    Inventors: Edward E. Francisco, Jr., Gary D. Cohrs, Samuel H. Smith
  • Patent number: 4996869
    Abstract: A moveable fluid barrier (16) is driven from an upstream position to a downstream position through a measuring cylinder (18) connected fluidically in series with the flowmeter (22) under test to induce fluid flow therethrough at a flow rate related to the movement of the barrier. The response of the flowmeter is sensed during a plurality of time intervals as the barrier is driven through the conduit from the upstream position toward the downstream position in the course of a test run. The movement of the fluid barrier is also sensed (28) during these intervals. From the flowmeter response and the fluid barrier movement, a K-factor sample is determined for each interval. The K-factor samples are compared (12) with each other to selected a valid K-factor data point for the particular test run. Specifically, the criterion for determining a valid K-factor data point is the variation between K-factor samples under comparison.
    Type: Grant
    Filed: November 14, 1988
    Date of Patent: March 5, 1991
    Assignee: EG&G Flow Technology, Inc.
    Inventors: Gary D. Cohrs, Samuel H. Smith, Edward E. Francisco, Jr.