Patents by Inventor Samuel N. Sanders

Samuel N. Sanders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220305724
    Abstract: Articles and methods for increasing the triplet upconversion threshold, e.g., by utilizing a triplet exciton acceptor lower in energy than the sensitizer or upconverter, are generally described. Some embodiments, for example, are directed to articles and methods that use a triplet sensitizer, an upconverter, and an acceptor to produce upconverted photons (e.g., light of a second energy). The light can be used to polymerize a polymerizable species. Other upconversion configurations can also be used in other embodiments. In some cases, this may allow true 3D printing to be achieved due to improved control of light absorption, e.g., without needing to “print” on a layer-by-layer basis.
    Type: Application
    Filed: June 17, 2020
    Publication date: September 29, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: Daniel N. Congreve, Samuel N. Sanders
  • Publication number: 20220025255
    Abstract: The present invention generally relates to photon upconversion nanocapsules for 3D printing and other applications. For example, one aspect is generally related to nanocapsules that contain an upconversion material. Light, such as laser light, focused on a region of liquid containing nanocapsules may be upconverted by the upconversion material to produce wavelengths sufficient to cause polymerization of a polymerizable entity to occur. However, in contrast, although other regions may receive some light, that light may not be of sufficient focus or intensity to be upconverted, and thus, the polymerizable entity in those regions would generally not polymerize. In such a fashion, the extent of polymerization can be controlled, for example, by controlling where light is applied to the liquid. The light could be focused at arbitrary regions within the liquid, thus allowing true 3D-printing to occur.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 27, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: Daniel N. Congreve, Samuel N. Sanders, Richard Christopher Stokes, Mahesh Kumar Gangishetty