Patents by Inventor Samuel Siegel

Samuel Siegel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11780296
    Abstract: A method for operating a cooling system of a motor vehicle for cooling at least one component, a cooling system of a motor vehicle for cooling at least one component, and a motor vehicle having such a cooling system. The cooling system has a coolant circuit and a refrigerant circuit. The coolant circuit serves for cooling the at least one component and the refrigerant circuit and the coolant circuit are coupled thermally to one another via a heat exchanger. The coolant circuit has a conveying device for conveying a coolant in the coolant circuit. A cooling power of the refrigerant circuit can be regulated. The regulation of the cooling power of the refrigerant circuit is realized in a manner dependent on a return temperature of the coolant and/or on a temporal development of the return temperature of the coolant.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: October 10, 2023
    Inventors: Tobias Rapp, Samuel Siegel, Andreas Adam, Marcel Dannowski, Christian Brozicek
  • Publication number: 20220363111
    Abstract: A method for operating a cooling system of a motor vehicle for cooling at least one component, a cooling system of a motor vehicle for cooling at least one component, and a motor vehicle having such a cooling system. The cooling system has a coolant circuit and a refrigerant circuit. The coolant circuit serves for cooling the at least one component and the refrigerant circuit and the coolant circuit are coupled thermally to one another via a heat exchanger. The coolant circuit has a conveying device for conveying a coolant in the coolant circuit. A cooling power of the refrigerant circuit can be regulated. The regulation of the cooling power of the refrigerant circuit is realized in a manner dependent on a return temperature of the coolant and/or on a temporal development of the return temperature of the coolant.
    Type: Application
    Filed: April 5, 2022
    Publication date: November 17, 2022
    Applicant: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Tobias Rapp, Samuel Siegel, Andreas Adam, Marcel Dannowski, Christian Brozicek
  • Patent number: 10184113
    Abstract: The described invention provides an ex vivo dynamic multiple myeloma (MM) cancer niche contained in a microfluidic device. The dynamic MM cancer niche includes (a) a three-dimensional tissue construct containing a dynamic ex vivo bone marrow (BM) niche, which contains a mineralized bone-like tissue containing viable osteoblasts self-organized into cohesive multiple cell layers and an extracellular matrix secreted by the viable adherent osteoblasts; and a microenvironment dynamically perfused by nutrients and dissolved gas molecules; and (b) human myeloma cells seeded from a biospecimen composition comprising mononuclear cells and the multiple myeloma cells. The human myeloma cells are in contact with osteoblasts of the BM niche, and the viability of the human myeloma cells is maintained by the MM cancer niche.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 22, 2019
    Assignees: Hackensack University Medical Center, The Trustees of The Stevens Institute of Technology
    Inventors: Woo Lee, Jenny Zilberberg, David Samuel Siegel, Peter Tolias, Hongjun Wang, Wenting Zhang
  • Publication number: 20160137986
    Abstract: The described invention provides an ex vivo dynamic multiple myeloma (MM) cancer niche contained in a microfluidic device. The dynamic MM cancer niche includes (a) a three-dimensional tissue construct containing a dynamic ex vivo bone marrow (BM) niche, which contains a mineralized bone-like tissue containing viable osteoblasts self-organized into cohesive multiple cell layers and an extracellular matrix secreted by the viable adherent osteoblasts; and a microenvironment dynamically perfused by nutrients and dissolved gas molecules; and (b) human myeloma cells seeded from a biospecimen composition comprising mononuclear cells and the multiple myeloma cells. The human myeloma cells are in contact with osteoblasts of the BM niche, and the viability of the human myeloma cells is maintained by the MM cancer niche.
    Type: Application
    Filed: December 17, 2015
    Publication date: May 19, 2016
    Inventors: Woo Lee, Jenny Zilberberg, David Samuel Siegel, Peter Tolias, Hongjun Wang, Wenting Zhang
  • Patent number: 9267938
    Abstract: The described invention provides an ex vivo dynamic multiple myeloma (MM) cancer niche contained in a microfluidic device. The dynamic MM cancer niche includes (a) a three-dimensional tissue construct containing a dynamic ex vivo bone marrow (BM) niche, which contains a mineralized bone-like tissue containing viable osteoblasts self-organized into cohesive multiple cell layers and an extracellular matrix secreted by the viable adherent osteoblasts; and a microenvironment dynamically perfused by nutrients and dissolved gas molecules; and (b) human myeloma cells seeded from a biospecimen composition comprising mononuclear cells and the multiple myeloma cells. The human myeloma cells are in contact with osteoblasts of the BM niche, and the viability of the human myeloma cells is maintained by the MM cancer niche.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 23, 2016
    Assignees: The Trustees of the Stevens Institute of Technology, Hackensack University Medical Center
    Inventors: Woo Lee, Jenny Zilberberg, David Samuel Siegel, Peter Tolias, Hongjun Wang, Wenting Zhang
  • Publication number: 20140274953
    Abstract: The described invention provides an ex vivo dynamic multiple myeloma (MM) cancer niche contained in a microfluidic device. The dynamic MM cancer niche includes (a) a three-dimensional tissue construct containing a dynamic ex vivo bone marrow (BM) niche, which contains a mineralized bone-like tissue containing viable osteoblasts self-organized into cohesive multiple cell layers and an extracellular matrix secreted by the viable adherent osteoblasts; and a microenvironment dynamically perfused by nutrients and dissolved gas molecules; and (b) human myeloma cells seeded from a biospecimen composition comprising mononuclear cells and the multiple myeloma cells. The human myeloma cells are in contact with osteoblasts of the BM niche, and the viability of the human myeloma cells is maintained by the MM cancer niche.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Woo Lee, Jenny Zilberberg, David Samuel Siegel, Peter Tolias, Hongjun Wang, Wenting Zhang
  • Publication number: 20100198058
    Abstract: A system and method for detecting a surgical implement retained within a surgically exposed human body cavity, includes a tag adapted to be attached to a surgical implement insertable within a human body cavity, including a means for receiving an electromagnetic signal and converting it into electric signal; and a means to impress said electric signal on the internal human (or an animal) body where said medical product is used; and means to transmit said electromagnetic signal; and a detecting means including reception means for receiving the electric signal from the body and a detector means connected to the reception means for detecting the electric signal. The envelope of the induced RF wave is demodulated, thus allowing the voltage at the output to vary at a significantly lower frequency. In the event such pulses are sensed, a sensory alert is actuated.
    Type: Application
    Filed: April 2, 2010
    Publication date: August 5, 2010
    Inventors: Randall John Benson, George Phillips O'Brien, Zinovy Yefimovich Royzen, Thomas Samuel Siegel