Patents by Inventor Sanae Hamanaka

Sanae Hamanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11856927
    Abstract: The present invention has found that chimeric animals suffer from noticeable inflammation after birth, though neither immune response nor inflammation in the fetal period of these animals has been reported hitherto. This is an unexpected finding since chimeric animals in the fetal period were exclusively analyzed in prior studies and thus it is deemed that immunotolerance has been theoretically established therein. The present invention provides a composition for suppressing immune response or inflammation in the fetal period of a born chimeric animal.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: January 2, 2024
    Assignee: The University of Tokyo
    Inventors: Hiromitsu Nakauchi, Tomoyuki Yamaguchi, Sanae Hamanaka, Hideyuki Sato, Hideki Masaki, Naoaki Mizuno, Motoo Watanabe
  • Publication number: 20220338452
    Abstract: An object of the present invention is to produce a mammalian organ having a complicated cellular composition composed of multiple kinds of cells, such as kidney, pancreas, thymus and hair, in the living body of a non-human animal. The inventors of the present invention applied the chimeric animal assay described above, to a novel solid organ production method. More specifically, the inventors has shown that a model mouse which is deficient of kidney, pancreas, thymus or hair due to the dysfunction of the metanephric mesenchyme that is differentiated into most of an adult kidney, is rescued by blastocyst complementation by the chimeric animal assay, and whereby a kidney, a pancreas, thymus or hair can be newly produced.
    Type: Application
    Filed: October 8, 2021
    Publication date: October 27, 2022
    Inventors: Hiromitsu NAKAUCHI, Toshihiro KOBAYASHI, Younsu LEE, Joichi USUI, Tomoyuki YAMAGUCHI, Sanae HAMANAKA
  • Publication number: 20220192164
    Abstract: It is revealed that an organ such as pancreas can be regenerated by utilizing a fact that the deficiency of an organ is complemented by injecting an induced pluripotent stem cell (iPS cell) into a developed blastocyst in a blastocyst complementation method. Thus, the present invention has solved the above-described object. This provides a method for producing a target organ, using an iPS cell, in a living body of a non-human mammal having an abnormality associated with a lack of development of the target organ in a development stage, the target organ produced being derived from a different individual mammal that is an individual different from the non-human mammal.
    Type: Application
    Filed: August 26, 2021
    Publication date: June 23, 2022
    Inventors: Hiromitsu NAKAUCHI, Toshihiro KOBAYASHI, Tomoyuki YAMAGUCHI, Sanae HAMANAKA
  • Publication number: 20200137991
    Abstract: The present invention has found that chimeric animals suffer from noticeable inflammation after birth, though neither immune response nor inflammation in the fetal period of these animals has been reported hitherto. This is an unexpected finding since chimeric animals in the fetal period were exclusively analyzed in prior studies and thus it is deemed that immunotolerance has been theoretically established therein. The present invention provides a composition for suppressing immune response or inflammation in the fetal period of a born chimeric animal.
    Type: Application
    Filed: January 25, 2018
    Publication date: May 7, 2020
    Inventors: Hiromitsu NAKAUCHI, Tomoyuki YAMAGUCHI, Sanae HAMANAKA, Hideyuki SATO, Hideki MASAKI, Naoaki MIZUNO, Motoo WATANABE
  • Publication number: 20200008404
    Abstract: An object of the present invention is to produce a mammalian organ having a complicated cellular composition composed of multiple kinds of cells, such as kidney, pancreas, thymus and hair, in the living body of a non-human animal. The inventors of the present invention applied the chimeric animal assay described above, to a novel solid organ production method. More specifically, the inventors has shown that a model mouse which is deficient of kidney, pancreas, thymus or hair due to the dysfunction of the metanephric mesenchyme that is differentiated into most of an adult kidney, is rescued by blastocyst complementation by the chimeric animal assay, and whereby a kidney, a pancreas, thymus or hair can be newly produced.
    Type: Application
    Filed: March 18, 2019
    Publication date: January 9, 2020
    Inventors: Hiromitsu Nakauchi, Toshihiro Kobayashi, Younsu Lee, Joichi Usui, Tomoyuki Yamaguchi, Sanae Hamanaka
  • Publication number: 20190133093
    Abstract: It is revealed that an organ such as pancreas can be regenerated by utilizing a fact that the deficiency of an organ is complemented by injecting an induced pluripotent stem cell (iPS cell) into a developed blastocyst in a blastocyst complementation method. Thus, the present invention has solved the above-described object. This provides a method for producing a target organ, using an iPS cell, in a living body of a non-human mammal having an abnormality associated with a lack of development of the target organ in a development stage, the target organ produced being derived from a different individual mammal that is an individual different from the non-human mammal.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 9, 2019
    Inventors: Hiromitsu NAKAUCHI, Toshihiro KOBAYASHI, Tomoyuki YAMAGUCHI, Sanae HAMANAKA
  • Publication number: 20170280692
    Abstract: An object of the present invention is to produce a mammalian organ having a complicated cellular composition composed of multiple kinds of cells, such as kidney, pancreas, thymus and hair, in the living body of a non-human animal. The inventors of the present invention applied the chimeric animal assay described above, to a novel solid organ production method. More specifically, the inventors has shown that a model mouse which is deficient of kidney, pancreas, thymus or hair due to the dysfunction of the metanephric mesenchyme that is differentiated into most of an adult kidney, is rescued by blastocyst complementation by the chimeric animal assay, and whereby a kidney, a pancreas, thymus or hair can be newly produced.
    Type: Application
    Filed: December 12, 2016
    Publication date: October 5, 2017
    Inventors: Hiromitsu NAKAUCHI, Toshihiro KOBAYASHI, Younsu LEE, Joichi USUI, Tomoyuki YAMAGUCHI, Sanae HAMANAKA
  • Publication number: 20160324130
    Abstract: It is revealed that an organ such as pancreas can be regenerated by utilizing a fact that the deficiency of an organ is complemented by injecting an induced pluripotent stem cell (iPS cell) into a developed blastocyst in a blastocyst complementation method. Thus, the present invention has solved the above-described object. This provides a method for producing a target organ, using an iPS cell, in a living body of a non-human mammal having an abnormality associated with a lack of development of the target organ in a development stage, the target organ produced being derived from a different individual mammal that is an individual different from the non-human mammal.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Hiromitsu NAKAUCHI, Toshihiro KOBAYASHI, Tomoyuki YAMAGUCHI, Sanae HAMANAKA
  • Publication number: 20140338008
    Abstract: It is revealed that an organ such as pancreas can be regenerated by utilizing a fact that the deficiency of an organ is complemented by injecting an induced pluripotent stem cell (iPS cell) into a developed blastocyst in a blastocyst complementation method. Thus, the present invention has solved the above-described object. This provides a method for producing a target organ, using an iPS cell, in a living body of a non-human mammal having an abnormality associated with a lack of development of the target organ in a development stage, the target organ produced being derived from a different individual mammal that is an individual different from the non-human mammal.
    Type: Application
    Filed: March 5, 2014
    Publication date: November 13, 2014
    Applicant: The University of Tokyo
    Inventors: Hiromitsu Nakauchi, Toshihiro Kobayashi, Tomoyuki Yamaguchi, Sanae Hamanaka
  • Publication number: 20110283374
    Abstract: A heterologous chimeric animal can be produced by a method comprising the steps of: (A) injecting a stem cell into a blastocyst cavity in a blastocyst stage of an animal heterologous to that of the stem cell, or mixing the stem cell with a divided fertilized egg of the animal heterologous to that of the stem cell; and (B) growing a cell mass including the stem cell prepared in the step (A) into a chimeric animal between a species of the stem cell and a species of the heterologous animal.
    Type: Application
    Filed: January 29, 2010
    Publication date: November 17, 2011
    Applicants: INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Hiromitsu Nakauchi, Toshihiro Kobayashi, Tomoyuki Yamaguchi, Sanae Hamanaka, Masumi Hirabayashi, Megumi Kato
  • Publication number: 20110258715
    Abstract: It is revealed that an organ such as pancreas can be regenerated by utilizing a fact that the deficiency of an organ is complemented by injecting an induced pluripotent stem cell (iPS cell) into a developed blastocyst in a blastocyst complementation method. Thus, the present invention has solved the above-described object. This provides a method for producing a target organ, using an iPS cell, in a living body of a non-human mammal having an abnormality associated with a lack of development of the target organ in a development stage, the target organ produced being derived from a different individual mammal that is an individual different from the non-human mammal.
    Type: Application
    Filed: August 21, 2009
    Publication date: October 20, 2011
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Hiromitsu Nakauchi, Toshihiro Kobayashi, Tomoyuki Yamaguchi, Sanae Hamanaka
  • Publication number: 20100122360
    Abstract: An object of the present invention is to produce a mammalian organ having a complicated cellular composition composed of multiple kinds of cells, such as kidney, pancreas, thymus and hair, in the living body of a non-human animal. The inventors of the present invention applied the chimeric animal assay described above, to a novel solid organ production method. More specifically, the inventors has shown that a model mouse which is deficient of kidney, pancreas, thymus or hair due to the dysfunction of the metanephric mesenchyme that is differentiated into most of an adult kidney, is rescued by blastocyst complementation by the chimeric animal assay, and whereby a kidney, a pancreas, thymus or hair can be newly produced.
    Type: Application
    Filed: August 21, 2009
    Publication date: May 13, 2010
    Applicant: The University of Tokyo
    Inventors: Hiromitsu Nakauchi, Toshihiro Kobayashi, Younsu Lee, Joichi Usui, Tomoyuki Yamaguchi, Sanae Hamanaka