Patents by Inventor Sandor Nagy

Sandor Nagy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090062489
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged bis-indeno[2,1-b]indolyl zirconium complex. The process uses a highly active catalyst and provides polyethylene characterized by a high level of long-chain branching.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 5, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Publication number: 20090062487
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged indeno[1,2-b]indolyl zirconium complex. The process produces polyethylene characterized by good incorporation of the ?-olefin and low long-chain branching. The process is capable of forming high-molecular-weight polyethylene and has good hydrogen sensitivity.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 5, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Publication number: 20090062490
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin, hydrogen, and a catalyst comprising an activator and a supported, dimethylsilyl-bridged bis(indenoindolyl)zirconium complex. The process has high catalyst activity and produces polyethylene having a broad molecular weight distribution.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 5, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Bradley P. Etherton, Jean A. Merrick-Mack, Everett O. Lewis, Mark P. Mack, Natalia Nagy, Edward S. Vargas
  • Publication number: 20090062488
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged indeno[1,2-b]indolyl zirconium complex. The process produces polyethylene characterized by good incorporation of the ?-olefin and moderate long-chain branching. The process is capable of forming high molecular weight polyethylene and has good catalyst activity.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 5, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Publication number: 20070293639
    Abstract: A process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of a catalyst system which comprises a bridged indenoindolyl transition metal complex on a support material, an alkylalumoxane, a titanium tetralkoxide, and a branched alkyl aluminum compound. The process provides polyethylenes with low density from ethylene alone.
    Type: Application
    Filed: June 20, 2006
    Publication date: December 20, 2007
    Inventors: Sandor Nagy, Barbara M. Tsuie, Ronald J. Clemons
  • Patent number: 7189675
    Abstract: A method for preparing an olefin polymerization catalyst is disclosed. An inorganic oxide is contacted with plasma and a transition metal compound is supported on the contacted inorganic oxide. The method is fast, convenient, and avoids many of the problems associated with known methods of supporting catalysts.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 13, 2007
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Publication number: 20070055021
    Abstract: Disclosed is a polyethylene composition. The composition comprises single-site multimodal resin A and single-site multimodal resin B, wherein resin A differs from resin B in molecular weight, in monomeric composition, in density, in long chain branch concentration or distribution, or in combinations thereof. Disclosed is also a method for making the polyethylene composition. The method comprises polymerizing, in the presence of two or more single-site catalysts, ethylene or its mixture with a C3-C10 ?-olefin to form a first multimodal resin and continuing the polymerization in the presence of the same catalysts but in a different hydrogen concentration, in a different monomer composition, or at a different temperature to form a second multimodal resin.
    Type: Application
    Filed: September 2, 2005
    Publication date: March 8, 2007
    Inventors: Venki Chandrashekar, Mark Mack, Charles Gates, Charles Holland, Natalia Nagy, Sandor Nagy, Edward Vargas, Jean Merrick-Mack
  • Patent number: 7144964
    Abstract: A high-temperature solution process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a preassembled bimetallic Ziegler-Natta catalyst and an aluminum compound. Molecular modeling calculations predict that the bimetallic Ziegler-Natta catalyst will have good activity and improved stability versus traditional Ziegler-Natta catalysts. This makes the catalyst especially suitable for solution polymerization processes, which require a thermally robust catalyst.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: December 5, 2006
    Assignee: Equistar Chemicals, L.P.
    Inventors: Sandor Nagy, Mark P. Mack
  • Patent number: 7122497
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises a cocatalyst and a supported transition metal prepared from a halogen-containing Group 4–6 transition metal compound and an organoaluminum-siloxane containing mixture. The latter mixture, which is prepared from an organoaluminum compound and an organomagnesium-siloxane reaction product, incorporates a chelating ligand. The invention includes a method for making the catalyst system and a process for polymerizing olefins using the catalyst system. The process is convenient and avoids expensive catalyst components used in known olefin polymerization processes.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: October 17, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Publication number: 20060199726
    Abstract: A method for preparing an olefin polymerization catalyst is disclosed. An inorganic oxide is contacted with plasma and a transition metal compound is supported on the contacted inorganic oxide. The method is fast, convenient, and avoids many of the problems associated with known methods of supporting catalysts.
    Type: Application
    Filed: March 7, 2005
    Publication date: September 7, 2006
    Inventor: Sandor Nagy
  • Patent number: 7091291
    Abstract: A process for polymerizing an alpha-olefin is disclosed. The polymerization is performed in the presence of a catalyst system comprising a three-membered titanacycle. A wide variety of titanacycles can be readily prepared, making this a versatile and inexpensive olefin polymerization process.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: August 15, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Patent number: 7078362
    Abstract: A modified Ziegler-Natta catalyst system comprising a titanium or vanadium compound, a magnesium compound, a carbene donor, and an aluminum compound is disclosed. The invention includes a process which comprises polymerizing an alpha-olefin in the presence of the carbene-modified Ziegler-Natta catalyst system. The carbene donor may be used as either an internal or external donor. The use of carbene donors in Ziegler-Natta catalyzed olefin polymerizations should improve catalyst activity and/or stereospecificity.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: July 18, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Publication number: 20060128558
    Abstract: A modified Ziegler-Natta catalyst system comprising a titanium or vanadium compound, a magnesium compound, a carbene donor, and an aluminum compound is disclosed. The invention includes a process which comprises polymerizing an alpha-olefin in the presence of the carbene-modified Ziegler-Natta catalyst system. The carbene donor may be used as either an internal or external donor. The use of carbene donors in Ziegler-Natta catalyzed olefin polymerizations should improve catalyst activity and/or stereospecificity.
    Type: Application
    Filed: December 9, 2004
    Publication date: June 15, 2006
    Inventor: Sandor Nagy
  • Patent number: 7053139
    Abstract: The oxidation of a polymer is inhibited by adding to the polymer about 0.005 to about 10 phr of an antioxidant having (in non-polymeric form) the general formula The polymer can be poly(vinylchloride), a polycarbonate, a polyether, polyethylene, polypropylene, or a mixture thereof when the antioxidant is not phthalide and can be poly (vinylchloride), a polycarbonate, a polyether, or a mixture thereof when the antioxidant is phthalide.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: May 30, 2006
    Inventors: Qi Wang, Sandor Nagy
  • Patent number: 7049262
    Abstract: The present invention provides a method of preparing a supported catalyst from a liquid catalyst system dispersed on a solid carrier. The method of this embodiment comprises freezing the liquid catalyst system in a non-reactive liquid to form a frozen catalyst system dispersed within the non-reactive liquid. The frozen catalyst system is then contacted with a solid carrier. Finally, the non-reactive liquid is removed to yield the supported catalyst. In another embodiment, a supported catalyst made by the methods of the present invention is provided.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: May 23, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Kenneth W. Johnson
  • Patent number: 7026415
    Abstract: Catalyst systems and methods for olefin polymerization are disclosed. The polymerizations are performed in the presence of a clathrochelate which comprises a transition metal ion and an encapsulating macropolycyclic ligand. At least one of the capping atoms of the macropolycyclic ligand is a Group 3–10 transition metal or a Group 13 atom. When a capping atom is a Group 3–10 transition metal, the clathrochelate can be used with an activator to polymerize olefins. When a capping atom is a Group 13 atom, the clathrachelate can be used as an activator for an olefin polumerization. Clathrochelates allow polyolefin markers to fine tune catalyst reactivity and polyolefin properties.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: April 11, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Patent number: 7005489
    Abstract: A new class of zwitterionic metallocycles is disclosed. A positively charged Group 4-10 transition metal is chelated to two heteroatoms and one of the heteroatoms has a substituent bearing a negative charge. We have found that substitution in this position stabilizes the zwitterion form of the metallocycle. The zwitterionic metallocycle is useful for olefin polymerizations.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: February 28, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Mark P. Mack
  • Publication number: 20060041088
    Abstract: A high-temperature solution process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a preassembled bimetallic Ziegler-Natta catalyst and an aluminum compound. Molecular modeling calculations predict that the bimetallic Ziegler-Natta catalyst will have good activity and improved stability versus traditional Ziegler-Natta catalysts. This makes the catalyst especially suitable for solution polymerization processes, which require a thermally robust catalyst.
    Type: Application
    Filed: August 19, 2004
    Publication date: February 23, 2006
    Inventors: Sandor Nagy, Mark Mack
  • Patent number: D547858
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: July 31, 2007
    Inventors: Sandor Kallay, Zsolt Roncs, Sandor Nagy
  • Patent number: D548832
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: August 14, 2007
    Inventors: Sandor Kallay, Zsolt Roncs, Sandor Nagy