Patents by Inventor Sanford Chu

Sanford Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11721609
    Abstract: In a method for forming an integrated structure, a top dielectric layer is formed over a top surface of a substrate. The top dielectric layer includes a plurality of vias that are formed through the top dielectric layer and extend into the substrate. A bottom dielectric layer is formed on a bottom surface of the substrate. An isolation opening and a plurality of contact openings are further formed in the bottom dielectric layer and the substrate, where the isolation opening passes through the bottom dielectric layer and extends from the bottom surface to the top surface of the substrate. The isolation opening is filled with an insulating layer to form an isolation trench. The plurality of contact openings are filled with a conductive layer to form a plurality of through silicon contacts (TSCs). A conductive plate is further formed over the bottom dielectric layer.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: August 8, 2023
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Liang Chen, Wei Liu, Shao-Fu Sanford Chu
  • Patent number: 11710679
    Abstract: In a TSC structure, a first dielectric layer is formed over a first main surface of a substrate. A TSC is formed in the first dielectric layer and the substrate so that the TSC passes through the first dielectric layer and extends into the substrate. A conductive plate is formed over the first dielectric layer and electrically coupled with the TSC. A second dielectric layer is formed on an opposing second main surface of the substrate. A first via is formed in the second dielectric layer, and a first end of the first via extends into the substrate to be in contact with the TSC. A second via is formed in the second dielectric layer and a first end of the second via extends into the substrate. A metal line is formed over the second dielectric layer so as to be coupled to the first via and the second via.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: July 25, 2023
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Liang Chen, Wei Liu, Shao-Fu Sanford Chu
  • Publication number: 20210313251
    Abstract: In a method for forming an integrated structure, a top dielectric layer is formed over a top surface of a substrate. The top dielectric layer includes a plurality of vias that are formed through the top dielectric layer and extend into the substrate. A bottom dielectric layer is formed on a bottom surface of the substrate. An isolation opening and a plurality of contact openings are further formed in the bottom dielectric layer and the substrate, where the isolation opening passes through the bottom dielectric layer and extends from the bottom surface to the top surface of the substrate. The isolation opening is filled with an insulating layer to form an isolation trench. The plurality of contact openings are filled with a conductive layer to form a plurality of through silicon contacts (TSCs). A conductive plate is further formed over the bottom dielectric layer.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 7, 2021
    Applicant: Yangtze Memory Technologies Co., Ltd.
    Inventors: Liang CHEN, Wei LIU, Shao-Fu Sanford CHU
  • Publication number: 20210296210
    Abstract: In a TSC structure, a first dielectric layer is formed over a first main surface of a substrate. A TSC is formed in the first dielectric layer and the substrate so that the TSC passes through the first dielectric layer and extends into the substrate. A conductive plate is formed over the first dielectric layer and electrically coupled with the TSC. A second dielectric layer is formed on an opposing second main surface of the substrate. A first via is formed in the second dielectric layer, and a first end of the first via extends into the substrate to be in contact with the TSC. A second via is formed in the second dielectric layer and a first end of the second via extends into the substrate. A metal line is formed over the second dielectric layer so as to be coupled to the first via and the second via.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Applicant: Yangtze Memory Technologies Co., Ltd.
    Inventors: Liang CHEN, Wei LIU, Shao-Fu Sanford CHU
  • Patent number: 11069596
    Abstract: In a TSC structure, a first dielectric layer is formed over a first main surface of a substrate. The substrate includes an opposing second main surface. A TSC is formed in the first dielectric layer and the substrate so that the TSC passes through the first dielectric layer and extends into the substrate. A conductive plate is formed over the first dielectric layer and electrically coupled with the TSC. An isolation trench is formed in the substrate to surround the conductive plate and spaced apart from the conductive plate. A second dielectric layer is formed on the second main surface of the substrate. A first plurality of vias are formed in the second dielectric layer that extend into the substrate and are connected to the TSC. A second plurality of vias are formed in the second dielectric layer that extend into the substrate and are not connected to the TSC.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: July 20, 2021
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Liang Chen, Wei Liu, Shao-Fu Sanford Chu
  • Patent number: 10847534
    Abstract: Embodiments of staircase structures for three-dimensional (3D) memory devices double-sided routing are disclosed. In an example, a 3D memory device includes a substrate, a memory stack disposed above the substrate and including conductor/dielectric layer pairs stacked alternatingly, and an array of memory strings each extending vertically through an inner region of the memory stack. An outer region of the memory stack includes a first staircase structure disposed on the substrate and a second staircase structure disposed above the first staircase structure. First edges of the conductor/dielectric layer pairs in the first staircase structure along a vertical direction away from the substrate are staggered laterally away from the array of memory strings. Second edges of the conductor/dielectric layer pairs in the second staircase structure along the vertical direction away from the substrate are staggered laterally toward the array of memory strings.
    Type: Grant
    Filed: September 22, 2018
    Date of Patent: November 24, 2020
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventor: Shao-Fu Sanford Chu
  • Publication number: 20200266128
    Abstract: In a TSC structure, a first dielectric layer is formed over a first main surface of a substrate. The substrate includes an opposing second main surface. A TSC is formed in the first dielectric layer and the substrate so that the TSC passes through the first dielectric layer and extends into the substrate. A conductive plate is formed over the first dielectric layer and electrically coupled with the TSC. An isolation trench is formed in the substrate to surround the conductive plate and spaced apart from the conductive plate. A second dielectric layer is formed on the second main surface of the substrate. A first plurality of vias are formed in the second dielectric layer that extend into the substrate and are connected to the TSC. A second plurality of vias are formed in the second dielectric layer that extend into the substrate and are not connected to the TSC.
    Type: Application
    Filed: March 27, 2019
    Publication date: August 20, 2020
    Applicant: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Liang CHEN, Wei Liu, Shao-Fu Sanford Chu
  • Publication number: 20200006377
    Abstract: Embodiments of staircase structures for three-dimensional (3D) memory devices double-sided routing are disclosed. In an example, a 3D memory device includes a substrate, a memory stack disposed above the substrate and including conductor/dielectric layer pairs stacked alternatingly, and an array of memory strings each extending vertically through an inner region of the memory stack. An outer region of the memory stack includes a first staircase structure disposed on the substrate and a second staircase structure disposed above the first staircase structure. First edges of the conductor/dielectric layer pairs in the first staircase structure along a vertical direction away from the substrate are staggered laterally away from the array of memory strings. Second edges of the conductor/dielectric layer pairs in the second staircase structure along the vertical direction away from the substrate are staggered laterally toward the array of memory strings.
    Type: Application
    Filed: September 22, 2018
    Publication date: January 2, 2020
    Inventor: Shao-Fu Sanford Chu
  • Patent number: 10115719
    Abstract: Integrated circuits having resistor structures formed from a MIM capacitor material and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a resistor area and a capacitor area. The method includes depositing a capacitor material over the resistor area and the capacitor area of the semiconductor substrate. The method also includes forming a resistor structure from the capacitor material in the resistor area. Further, the method includes forming electrical connections to the resistor structure in the resistor area.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 30, 2018
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Jagar Singh, Sanford Chu
  • Patent number: 9583557
    Abstract: Integrated circuits including a MIMCAP device and methods of forming the integrated circuits are provided. An exemplary method of forming an integrated circuit including a MIMCAP device includes pre-determining a thickness of at least one of a bottom high-K layer or a top high-K layer of the MIMCAP device, followed by fabricating the MIMCAP device. The pre-determined thickness is established based upon a pre-determined TDDB lifetime for the MIMCAP device and a minimum target capacitance density at an applied voltage bias to be employed for the MIMCAP device. The MIMCAP device includes a bottom electrode and a dielectric layer disposed over the bottom electrode. The dielectric layer includes a stack of individual layers including the bottom high-K layer, the top high-K layer, and a lower-K layer sandwiched therebetween. At least one of the bottom high-K layer or the top high-K layer has the pre-determined thickness.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: February 28, 2017
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Lili Cheng, Dina H. Triyoso, Jeasung Park, David Paul Brunco, Robert Fox, Sanford Chu
  • Patent number: 9530833
    Abstract: An illustrative method disclosed herein includes providing a semiconductor structure. The semiconductor structure includes a first interlayer dielectric provided over a semiconductor substrate. A first electrode of a first capacitor is formed over the first interlayer dielectric. A layer of first dielectric material is deposited over the first electrode of the first capacitor and the first interlayer dielectric. A layer of electrically conductive material is deposited over the layer of first dielectric material. A second electrode of the first capacitor and a first electrode of the second capacitor are formed from the layer of electrically conductive material. After the formation of the second electrode of the first capacitor and the first electrode of the second capacitor, a layer of second dielectric material is deposited and a second electrode of the second capacitor is formed over the layer of second dielectric material.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDARIES Inc.
    Inventors: Dina H. Triyoso, Sanford Chu, Johannes Mueller, Patrick Polakowski
  • Patent number: 9466661
    Abstract: Methods for fabricating MIM capacitors with low VCC or decoupling and analog/RF capacitors on a single chip and the resulting devices are provided. Embodiments include forming: first and second metal lines in a substrate; a first electrode over, but insulated from, the first metal line; a first high-k dielectric layer on the first electrode, the first high-k dielectric layer having a coefficient ?; a second electrode on the first high-k dielectric layer and over a portion of the first electrode; a second high-k dielectric layer on the second electrode, the second high-k dielectric layer having a coefficient ?? opposite in polarity but substantially equal in magnitude to ?; a third electrode on the second high-k dielectric layer over the entire first electrode; and a metal-filled via through a dielectric layer down to the first metal line, and a metal-filled via through the dielectric layer down to the second metal line.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Dina Triyoso, Shao-Fu Sanford Chu, Bo Yu
  • Publication number: 20160126239
    Abstract: Integrated circuits having resistor structures formed from a MIM capacitor material and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a resistor area and a capacitor area. The method includes depositing a capacitor material over the resistor area and the capacitor area of the semiconductor substrate. The method also includes forming a resistor structure from the capacitor material in the resistor area. Further, the method includes forming electrical connections to the resistor structure in the resistor area.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 5, 2016
    Inventors: Jagar Singh, Sanford Chu
  • Publication number: 20160104762
    Abstract: Methods for fabricating MIM capacitors with low VCC or decoupling and analog/RF capacitors on a single chip and the resulting devices are provided. Embodiments include forming: first and second metal lines in a substrate; a first electrode over, but insulated from, the first metal line; a first high-k dielectric layer on the first electrode, the first high-k dielectric layer having a coefficient ?; a second electrode on the first high-k dielectric layer and over a portion of the first electrode; a second high-k dielectric layer on the second electrode, the second high-k dielectric layer having a coefficient ?? opposite in polarity but substantially equal in magnitude to ?; a third electrode on the second high-k dielectric layer over the entire first electrode; and a metal-filled via through a dielectric layer down to the first metal line, and a metal-filled via through the dielectric layer down to the second metal line.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Inventors: Dina TRIYOSO, Shao-Fu Sanford CHU, Bo YU
  • Publication number: 20160064472
    Abstract: Integrated circuits including a MIMCAP device and methods of forming the integrated circuits are provided. An exemplary method of forming an integrated circuit including a MIMCAP device includes pre-determining a thickness of at least one of a bottom high-K layer or a top high-K layer of the MIMCAP device, followed by fabricating the MIMCAP device. The pre-determined thickness is established based upon a pre-determined TDDB lifetime for the MIMCAP device and a minimum target capacitance density at an applied voltage bias to be employed for the MIMCAP device. The MIMCAP device includes a bottom electrode and a dielectric layer disposed over the bottom electrode. The dielectric layer includes a stack of individual layers including the bottom high-K layer, the top high-K layer, and a lower-K layer sandwiched therebetween. At least one of the bottom high-K layer or the top high-K layer has the pre-determined thickness.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 3, 2016
    Inventors: Lili Cheng, Dina H. Triyoso, Jeasung Park, David Paul Brunco, Robert Fox, Sanford Chu
  • Patent number: 9269770
    Abstract: An integrated circuit system includes a substrate, forming a gate over the substrate, forming a first drift region having a first counter diffused region and a source diffused region, the first drift region in the substrate adjacent a first side of the gate, and forming a second drift region having a second counter diffused region and a drain diffused region, the second drift region in the substrate adjacent a second side of the gate opposite the first side of the gate.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: February 23, 2016
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Yisuo Li, Gang Chen, Francis Benistant, Purakh Raj Verma, Hong Yang, Shao-fu Sanford Chu
  • Publication number: 20150364535
    Abstract: An illustrative method disclosed herein includes providing a semiconductor structure. The semiconductor structure includes a first interlayer dielectric provided over a semiconductor substrate. A first electrode of a first capacitor is formed over the first interlayer dielectric. A layer of first dielectric material is deposited over the first electrode of the first capacitor and the first interlayer dielectric. A layer of electrically conductive material is deposited over the layer of first dielectric material. A second electrode of the first capacitor and a first electrode of the second capacitor are formed from the layer of electrically conductive material. After the formation of the second electrode of the first capacitor and the first electrode of the second capacitor, a layer of second dielectric material is deposited and a second electrode of the second capacitor is formed over the layer of second dielectric material.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventors: Dina H. Triyoso, Sanford Chu, Johannes Mueller, Patrick Polakowski
  • Patent number: 9029227
    Abstract: A p-channel flash memory is formed with a charge storage stack embedded in a hetero-junction layer in which a raised source/drain is formed. Embodiments include forming a dummy gate stack on a substrate, forming a layer on the substrate by selective epitaxial growth, on each side of the dummy gate stack, forming spacers on the layer, forming raised source/drains, removing the dummy gate stack, forming a cavity between the spacers, and forming a memory gate stack in the cavity. Different embodiments include forming the layer of a narrow bandgap material, a narrow bandgap layer under the spacers and a wide bandgap layer adjacent thereto, or a wide bandgap layer under the spacers, a narrow bandgap layer adjacent thereto, and a wide bandgap layer on the narrow bandgap layer.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: May 12, 2015
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Eng Huat Toh, Elgin Quek, Ying Keung Leung, Sanford Chu
  • Patent number: 9006055
    Abstract: Methods for forming FIN-shaped field effect transistors (FINFETs) capable of withstanding high voltage applications and the resulting devices are disclosed. Embodiments include forming a source and a drain on a substrate, forming a thin body (FIN) on the substrate and connecting the source and the drain, forming a gate over top and side surfaces of a first part of the FIN, thereby defining a drain-side FIN region of the FIN between the gate and the drain, and forming a shielding region over top and side surfaces of a second part of the FIN in the drain-side FIN region.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 14, 2015
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Han Xiao, Shaoqiang Zhang, Sanford Chu, Liming Li
  • Publication number: 20150008528
    Abstract: A method of forming a device is presented. The method includes providing a structure having first and second regions. A diffusion barrier is formed between at least a portion of the first and second regions. The diffusion barrier comprises cavities that reduce diffusion of elements between the first and second regions.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 8, 2015
    Inventors: Shyue Seng TAN, Lee Wee TEO, Yung Fu CHONG, Elgin QUEK, Sanford CHU