Patents by Inventor Sang-Ho Ye

Sang-Ho Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904069
    Abstract: The invention relates to biomimetic, biodegradable composites including a magnesium (Mg) alloy mesh and a polymer/extracellular matrix (ECM). These hybrid composites, more particularly, are useful for the fabrication of medical implant devices, e.g., scaffolds, and are effective for bone regeneration. The fabrication process includes creating the Mg alloy mesh, and concurrently electrospinning the polymer and electrospraying the ECM onto the mesh.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 20, 2024
    Assignees: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, UNIVERSITY OF CINCINNATI
    Inventors: William R. Wagner, Sang-Ho Ye, Yingqi Chen, Vesselin Shanov
  • Patent number: 11298452
    Abstract: A extracorporeal system for lung assist includes a housing, a blood flow inlet in fluid connection with the housing; a blood flow outlet in fluid connection with the housing; a plurality of hollow gas permeable fibers adapted to permit diffusion of gas between blood and an interior of the hollow gas permeable fibers, the plurality of hollow gas permeable fibers being positioned between the blood flow inlet and the blood flow outlet such that blood flows around the plurality of hollow gas permeable fibers when flowing from the blood flow inlet to the blood flow outlet; a gas inlet in fluid connection with the housing and in fluid connection with inlets of the plurality of hollow gas permeable fibers; a gas outlet in fluid connection with the housing and in fluid connection with outlets of the plurality of hollow gas permeable fibers; and at least one moving element to create velocity fields in blood flow contacting the plurality of hollow gas permeable fibers.
    Type: Grant
    Filed: September 22, 2018
    Date of Patent: April 12, 2022
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Carnegie Mellon University
    Inventors: William J. Federspiel, Brian Joseph Frankowski, James F. Antaki, Christian Andres Bermudez, Richard Garrett Jeffries, William R. Wagner, Sang-Ho Ye
  • Publication number: 20220049098
    Abstract: A zwitterionic polysiloxane polymer (e.g., a polyurethane elastomer) composition having poly(dialkylsiloxane) blocks and a zwitterionic moiety is prepared by the copolymerization of a poly(dialkylsiloxane) diol, a diisocyanate, a tertiary amine alkyl diol, and a poly(dialkylsiloxane) diamine to form a poly(urethane urea) copolymer. A substituted saturated heterocylic compound is reacted with the tertiary amine of the poly(urethane urea) copolymer to introduce a zwitterionic group into the poly(urethane urea) copolymer backbone. A polysiloxane polymer having a zwitterionic moiety is prepared by reacting a diallyl tertiary amine compound and a substituted saturated heterocylic compound to form a diallyl zwitterionic macromer and cross-linking a vinyl terminated poly(dialkylsiloxane) and the diallyl zwitterionic macromer with a curing agent to introduce a zwitterionic group into the poly(dialkylsiloxane) polymer.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 17, 2022
    Inventors: William R. Wagner, Sang Ho Ye, Seungil Kim, Sung Kwon Cho
  • Publication number: 20210236700
    Abstract: The present invention relates to substrates and composites having dynamic, reversible micron-level luminal surface deformation including texture or geometric instabilities, e.g., surface wrinkling and folding. The surface deformation and its reversal to the original surface form or to another, different surface form, is effective to reduce or prevent surface fouling and, more particularly, in certain applications, to reduce or prevent unwanted platelet adhesion and thrombus formation. The substrates and composites include a wide variety of designs and, more particularly, biomedical-related designs, such as, synthetic vascular graft or patch designs.
    Type: Application
    Filed: October 18, 2017
    Publication date: August 5, 2021
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, UPMC, UNIVERSIDAD DE SANTIAGO DE CHILE
    Inventors: WILLIAM R. WAGNER, SACHIN SHANKAR VELANKAR, SANG HO YE, EDITH TZENG, LUKA POCIVAVSEK, ENRIQUE CERDA
  • Publication number: 20210187158
    Abstract: The invention relates to biomimetic, biodegradable composites including a magnesium (Mg) alloy mesh and a polymer/extracellular matrix (ECM). These hybrid composites, more particularly, are useful for the fabrication of medical implant devices, e.g., scaffolds, and are effective for bone regeneration. The fabrication process includes creating the Mg alloy mesh, and concurrently electrospinning the polymer and electrospraying the ECM onto the mesh.
    Type: Application
    Filed: April 4, 2018
    Publication date: June 24, 2021
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, UNIVERSITY OF CINCINNATI
    Inventors: WILLIAM R. WAGNER, SANG-HO YE, YINGQI CHEN
  • Publication number: 20190022300
    Abstract: A extracorporeal system for lung assist includes a housing, a blood flow inlet in fluid connection with the housing; a blood flow outlet in fluid connection with the housing; a plurality of hollow gas permeable fibers adapted to permit diffusion of gas between blood and an interior of the hollow gas permeable fibers, the plurality of hollow gas permeable fibers being positioned between the blood flow inlet and the blood flow outlet such that blood flows around the plurality of hollow gas permeable fibers when flowing from the blood flow inlet to the blood flow outlet; a gas inlet in fluid connection with the housing and in fluid connection with inlets of the plurality of hollow gas permeable fibers; a gas outlet in fluid connection with the housing and in fluid connection with outlets of the plurality of hollow gas permeable fibers; and at least one moving element to create velocity fields in blood flow contacting the plurality of hollow gas permeable fibers.
    Type: Application
    Filed: September 22, 2018
    Publication date: January 24, 2019
    Inventors: William J. Federspiel, Brian Joseph Frankowski, James F. Antaki, Christian Andres Bermudez, Richard Garrett Jeffries, William R. Wagner, Sang-Ho Ye
  • Patent number: 10080834
    Abstract: A extracorporeal system for lung assist includes a housing, a blood flow inlet in fluid connection with the housing; a blood flow outlet in fluid connection with the housing; a plurality of hollow gas permeable fibers adapted to permit diffusion of gas between blood and an interior of the hollow gas permeable fibers, the plurality of hollow gas permeable fibers being positioned between the blood flow inlet and the blood flow outlet such that blood flows around the plurality of hollow gas permeable fibers when flowing from the blood flow inlet to the blood flow outlet; a gas inlet in fluid connection with the housing and in fluid connection with inlets of the plurality of hollow gas permeable fibers; a gas outlet in fluid connection with the housing and in fluid connection with outlets of the plurality of hollow gas permeable fibers; and at least one moving element to create velocity fields in blood flow contacting the plurality of hollow gas permeable fibers.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: September 25, 2018
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, CARNEGIE MELLON UNIVERSITY
    Inventors: William J. Federspiel, Brian Joseph Frankowski, James F. Antaki, Christian Andres Bermudez, Richard Garrett Jeffries, William R. Wagner, Sang-Ho Ye
  • Patent number: 9808560
    Abstract: A method of forming an implantable article includes providing a biodegradable polymer including anti-thrombogenic groups along the length of the biodegradable polymer, biodegradable groups in the backbone of the biodegradable polymer and a plurality of functional groups adapted to react with reactive functional groups on a surface of the implantable article, and reacting at least a portion of the plurality of functional groups with the reactive functional groups on the surface of the implantable article.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: November 7, 2017
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Yi Hong, William R Wagner, Sang-Ho Ye
  • Publication number: 20170049941
    Abstract: Provided herein are methods or making and using whole or partial organ ECM structures comprising an anticoagulant. Also provided are organ structures prepared according to those methods.
    Type: Application
    Filed: April 29, 2015
    Publication date: February 23, 2017
    Inventors: Alejandro SOTO-GUTIERREZ, Kentaro MATSUBARA, Ken FUKUMITSU, Kan HANDA, Jorge Guzman LEPE, William R. WAGNER, Sang Ho YE, Hiroshi YAGI, Yuko KITAGAWA
  • Publication number: 20140248232
    Abstract: A method of forming an implantable article includes providing a biodegradable polymer including anti-thrombogenic groups along the length of the biodegradable polymer, biodegradable groups in the backbone of the biodegradable polymer and a plurality of functional groups adapted to react with reactive functional groups on a surface of the implantable article, and reacting at least a portion of the plurality of functional groups with the reactive functional groups on the surface of the implantable article.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Yi Hong, William R, Wagner, Sang-Ho Ye