Patents by Inventor Sang-Su Kim

Sang-Su Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9646891
    Abstract: Example embodiments relate to a metal-oxide semiconductor field effect transistor (MOSFET) of a high performance operating with a necessary threshold voltage while including a channel region formed based on a group III-V compound, and a method of manufacturing the MOSFET. The MOSFET includes a substrate, a semiconductor layer including a group III-V compound on the substrate, and a gate structure disposed on the semiconductor layer, and including a gate electrode formed based on metal and undergone an ion implantation process.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: May 9, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-gil Yang, Tae-yong Kwon, Xingui Zhang, Sang-su Kim
  • Patent number: 9627273
    Abstract: A semiconductor device includes a first transistor and a second transistor. The first transistor includes a first nanowire extending through a first gate electrode and between first source and drain regions. The second transistor includes a second nanowire extending through a second gate electrode and between a second source and drain regions. The first nanowire has a first size in a first direction and a second size in a second direction, and the second nanowire has a second size in the first direction and substantially the second size in the second direction. The first nanowire has a first on current and the second nanowire has a second on current. The on current of the first nanowire may be substantially equal to the on current of the second nanowire based on a difference between the sizes of the first and second nanowires. In another arrangement, the on currents may be different.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 18, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sang-Su Kim
  • Publication number: 20170103916
    Abstract: A semiconductor device, including a first fin-type pattern; a first gate spacer on the first fin-type pattern, intersecting the first fin-type pattern, and including an upper portion and a lower portion; a second gate spacer on the first fin-type pattern, intersecting the first fin-type pattern, and being spaced apart from the first gate spacer; a first trench defined by the first gate spacer and the second gate spacer; a first gate electrode partially filling the first trench; a first capping pattern on the first gate electrode and filling the first trench; and an interlayer insulating layer covering an upper surface of the capping pattern, a width of the upper portion of the first gate spacer decreasing as a distance from an upper surface of the first fin-type pattern increases, and an outer sidewall of the upper portion of the first gate spacer contacting the interlayer insulating layer.
    Type: Application
    Filed: June 14, 2016
    Publication date: April 13, 2017
    Inventors: Yong-Ho JEON, Sang-Su KIM, Cheol KIM, Yong-Suk TAK, Myung-Geun SONG, Gi-Gwan PARK
  • Patent number: 9576955
    Abstract: Semiconductor devices are provided. The semiconductor devices include active fins including a buffer layer disposed on a substrate and a channel layer disposed on the buffer layer and having a first second lattice constant higher than a lattice constant of the buffer layer, a gate structure covering the channel layer and intersecting the active fins, sidewall spacers disposed on both sidewalls of the gate structure, and capping layers disposed to contact lower surfaces of the sidewall spacers and having a width substantially the same as a width of the lower surfaces of the sidewall spacers.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: February 21, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Hwan Lee, Tae Yong Kwon, Sang Su Kim, Chang Jae Yang, Jung Han Lee, Hwan Wook Choi, Yeon Cheol Heo, Sang Hyuk Hong
  • Publication number: 20170047402
    Abstract: A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Jung-Gil YANG, Sang-Su KIM, Sung-Gi HUR
  • Patent number: 9567471
    Abstract: Disclosed are an ink composition and a method for forming embossments using the ink composition. Accordingly, a process of removing a clear residue on the printed pattern in the related arts may be eliminated. In particular, the ink composition for improving formation of embossment may include: a silane-modified polyacrylate resin in an amount of about 10 to 40 wt %; a silicone-modified polyacrylate resin in an amount of about 50 to 80 wt %; a silicone oil-type additive in an amount of about 3 to 7 wt %; and a silicone oil compound-type additive in an amount of about 5 to 15 wt %. The ink composition has substantially reduced surface tension to provide excellent water-repellency and oil-repellency. As such, a clear paint may not be adhered to the printed pattern surface of the ink composition, but instead, the clear paint may be adhered to the non-printed surface, thereby forming an embossed pattern.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: February 14, 2017
    Assignees: HYUNDAI MOTOR COMPANY, AKZONOBEL INDUSTRIAL COATINGS KOREA LTD.
    Inventors: Seon Ho Jang, Ho Tak Jeon, Hyon Min Yang, Sang Su Kim
  • Publication number: 20170018645
    Abstract: Methods of forming a semiconductor device may include forming a fin-type active pattern that extends in a first direction on a substrate, the fin-type active pattern including a lower pattern on the substrate and an upper pattern on the lower pattern. A field insulating layer is formed on the substrate, the sidewalls of the fin-type active pattern, and a portion upper pattern protruding further away from the substrate than a top surface of the field insulating layer. A dummy gate pattern that intersects the fin-type active pattern and that extends in a second direction that is different from the first direction is formed. The methods include forming dummy gate spacers on side walls of the dummy gate pattern, forming recesses in the fin-type active pattern on both sides of the dummy gate pattern and forming source and drain regions on both sides of the dummy gate pattern.
    Type: Application
    Filed: July 29, 2016
    Publication date: January 19, 2017
    Inventors: Shigenobu Maeda, Tae-Yong Kwon, Sang-Su Kim, Jae-Hoo Park
  • Patent number: 9515147
    Abstract: A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: December 6, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Gil Yang, Sang-Su Kim, Sung-Gi Hur
  • Publication number: 20160329333
    Abstract: A semiconductor device includes a substrate, a strain-relaxed buffer layer on the substrate, at least one well in the strain-relaxed buffer layer, a first channel layer on the strain-relaxed buffer layer, and a second channel layer on the well. A lattice constant of material constituting the first well is less than a lattice constant of the material constituting the strain-relaxed buffer layer, but a lattice constant of material constituting the second well is greater than the lattice constant of the material constituting the strain-relaxed buffer layer.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: DONG-KYU LEE, JAE-HWAN LEE, TAE-YONG KWON, SANG-SU KIM, JUNG-DAL CHOI
  • Publication number: 20160329327
    Abstract: Semiconductor devices are provided. The semiconductor devices include active fins including a buffer layer disposed on a substrate and a channel layer disposed on the buffer layer and having a first second lattice constant higher than a lattice constant of the buffer layer, a gate structure covering the channel layer and intersecting the active fins, sidewall spacers disposed on both sidewalls of the gate structure, and capping layers disposed to contact lower surfaces of the sidewall spacers and having a width substantially the same as a width of the lower surfaces of the sidewall spacers.
    Type: Application
    Filed: January 11, 2016
    Publication date: November 10, 2016
    Inventors: Jae Hwan LEE, Tae Yong KWON, Sang Su KIM, Chang Jae YANG, Jung Han LEE, Hwan Wook CHOI, Yeon Cheol HEO, Sang Hyuk HONG
  • Publication number: 20160307927
    Abstract: A semiconductor device includes a plurality of active fins defined by an isolation layer on a substrate, a gate structure on the active fins and the isolation layer, and a gate spacer structure covering a sidewall of the gate structure. A sidewall of the gate structure includes first, second, and third regions having first, second, and third slopes, respectively. The second slope increases from a bottom toward a top of the second region. The second slope has a value at the bottom of the second region less than the first slope. The third slope is greater than the second slope.
    Type: Application
    Filed: January 12, 2016
    Publication date: October 20, 2016
    Inventors: Jung-Han Lee, Jae-Hwan Lee, Sang-Su Kim, Hwan-Wook Choi, Tae-Jong Lee, Seung-Mo Ha
  • Patent number: 9450049
    Abstract: A semiconductor device includes a substrate, a compound semiconductor layer, and first and second semiconductor patterns. The substrate includes first and second regions. The first semiconductor pattern is on the compound semiconductor layer of the first region and includes an element semiconductor. The second semiconductor pattern is on the compound semiconductor layer of the second region and includes a Group III-V semiconductor material.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 20, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-Yong Kwon, Sang-Su Kim, Jung-Gil Yang, Jung-Dal Choi
  • Publication number: 20160256960
    Abstract: A multi-functional apparatus for testing and etching a substrate capable of increasing spatial efficiency and manufacturing efficiency by performing testing and etching operations in a same chamber body and a substrate processing apparatus including the same, the multi-functional apparatus including a chamber body having an entrance into which the substrate is injected in one of its sides and an exit from which the substrate is ejected in another one of its sides; a transfer unit disposed inside of the chamber body and for transferring the injected substrate in a direction from the entrance to the exit; a laser etching unit disposed on an upper portion of the transfer unit and for etching a part of the substrate disposed on the transfer unit; and a testing unit for testing the substrate disposed on the transfer unit.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Inventors: Sung-Hwan Kim, Sang-Su Kim, Byoung-Seong Jeong, Je-Hyun Song, Tae-Hun Lee, Sung-Won Yang, Tae-Hyung Kim
  • Patent number: 9431537
    Abstract: Methods of forming a semiconductor device may include forming a fin-type active pattern that extends in a first direction on a substrate, the fin-type active pattern including a lower pattern on the substrate and an upper pattern on the lower pattern. A field insulating layer is formed on the substrate, the sidewalls of the fin-type active pattern, and a portion upper pattern protruding further away from the substrate than a top surface of the field insulating layer. A dummy gate pattern that intersects the fin-type active pattern and that extends in a second direction that is different from the first direction is formed. The methods include forming dummy gate spacers on side walls of the dummy gate pattern, forming recesses in the fin-type active pattern on both sides of the dummy gate pattern and forming source and drain regions on both sides of the dummy gate pattern.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 30, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Tae-Yong Kwon, Sang-Su Kim, Jae-Hoo Park
  • Patent number: 9425198
    Abstract: A semiconductor device includes a substrate, a strain-relaxed buffer layer on the substrate, at least one well in the strain-relaxed buffer layer, a first channel layer on the strain-relaxed buffer layer, and a second channel layer on the well. A lattice constant of material constituting the first well is less than a lattice constant of the material constituting the strain-relaxed buffer layer, but a lattice constant of material constituting the second well is greater than the lattice constant of the material constituting the strain-relaxed buffer layer.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: August 23, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Kyu Lee, Jae-Hwan Lee, Tae-Yong Kwon, Sang-Su Kim, Jung-Dal Choi
  • Patent number: 9412816
    Abstract: A semiconductor device comprises at least two nanowire patterns over a substrate, wherein the at least two nanowire patterns have increasingly narrower widths as they extend away from the substrate and have different channel impurity concentrations. A gate electrode surrounds at least a part of the at least two nanowire patterns. A gate dielectric film is disposed between the at least two nanowire patterns and the gate electrode.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: August 9, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-gil Yang, Sang-su Kim, Tae-yong Kwon
  • Publication number: 20160204277
    Abstract: A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Jung-Gil YANG, Sang-Su KIM, Sung-Gi HUR
  • Patent number: 9391134
    Abstract: A fin field effect transistor includes a first fin structure and a second fin structures both protruding from a substrate, first and second gate electrodes on the first and second fin structures, respectively, and a gate dielectric layer between each of the first and second fin structures and the first and second gate electrodes, respectively. Each of the first and second fin structures includes a buffer pattern on the substrate, a channel pattern on the buffer pattern, and an etch stop pattern provided between the channel pattern and the substrate. The etch stop pattern includes a material having an etch resistivity greater than that of the buffer pattern.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: July 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang-Jae Yang, Sang-Su Kim, Jae-Hwan Lee, Jung-Dal Choi
  • Patent number: 9324812
    Abstract: A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 26, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Gil Yang, Sang-Su Kim, Sung-Gi Hur
  • Publication number: 20160086861
    Abstract: A semiconductor device includes a first transistor and a second transistor. The first transistor includes a first nanowire extending through a first gate electrode and between first source and drain regions. The second transistor includes a second nanowire extending through a second gate electrode and between a second source and drain regions. The first nanowire has a first size in a first direction and a second size in a second direction, and the second nanowire has a second size in the first direction and substantially the second size in the second direction. The first nanowire has a first on current and the second nanowire has a second on current. The on current of the first nanowire may be substantially equal to the on current of the second nanowire based on a difference between the sizes of the first and second nanowires. In another arrangement, the on currents may be different.
    Type: Application
    Filed: December 9, 2015
    Publication date: March 24, 2016
    Inventor: Sang-Su KIM