Patents by Inventor Sanka Ganesan

Sanka Ganesan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088047
    Abstract: Embodiments disclosed herein include electronic packages. In an embodiment, an electronic package comprises a package substrate, wherein the package substrate comprises a first routing architecture. In an embodiment, the electronic package further comprises a first die on the package substrate, a second die on the package substrate, wherein the first die is electrically coupled to the second die by a bridge embedded in the package substrate, and a routing patch on the package substrate. In an embodiment, the routing patch is electrically coupled to the second die, and wherein the routing patch comprises a second routing architecture that is different than the first routing architecture.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Sanka Ganesan, Robert L. Sankman, Arghya Sain, Sri Chaitra Jyotsna Chavali, Lijiang Wang, Cemil Geyik
  • Publication number: 20240030116
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra-fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die-to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventors: Debendra MALLIK, Robert L. SANKMAN, Robert NICKERSON, Mitul MODI, Sanka GANESAN, Rajasekaran SWAMINATHAN, Omkar KARHADE, Shawna M. LIFF, Amruthavalli ALUR, Sri Chaitra J. CHAVALI
  • Publication number: 20240030142
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Application
    Filed: October 2, 2023
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Patent number: 11869842
    Abstract: Embodiments disclosed herein include electronic packages. In an embodiment, an electronic package comprises a package substrate, wherein the package substrate comprises a first routing architecture. In an embodiment, the electronic package further comprises a first die on the package substrate, a second die on the package substrate, wherein the first die is electrically coupled to the second die by a bridge embedded in the package substrate, and a routing patch on the package substrate. In an embodiment, the routing patch is electrically coupled to the second die, and wherein the routing patch comprises a second routing architecture that is different than the first routing architecture.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, Robert L. Sankman, Arghya Sain, Sri Chaitra Jyotsna Chavali, Lijiang Wang, Cemil Geyik
  • Patent number: 11817390
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Patent number: 11804426
    Abstract: Disclosed herein are integrated circuit (IC) structures that may be included in package substrates. For example, disclosed herein are passive components in package substrate, wherein the passive components include at least one non-circular via and at least one pad in contact with the at least one non-circular via, and the passive components include an inductor or a capacitor. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 31, 2023
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, William James Lambert, Zhichao Zhang, Sri Chaitra Jyotsna Chavali, Stephen Andrew Smith, Michael James Hill, Zhenguo Jiang
  • Publication number: 20230307441
    Abstract: Embodiments disclosed herein include a coupled inductor. In an embodiment, the coupled inductor comprises a first inductor and a second inductor. In an embodiment, the first inductor can be coupled to the first inductor. In an embodiment, the coupled inductor further comprises a first switch coupled to the first inductor, where the first switch comprises gallium and nitrogen, and a second switch coupled to the second inductor, where the second switch comprises gallium and nitrogen.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 28, 2023
    Inventors: Ahmed ABOU-ALFOTOUH, Jonathan DOUGLAS, Alan WU, Nachiket Venkappayya DESAI, Han Wui THEN, Harish KRISHNAMURTHY, Kaladhar RADHAKRISHNAN, Sanka GANESAN, Krishnan RAVICHANDRAN
  • Patent number: 11756889
    Abstract: Embodiments include semiconductor packages and methods to form the semiconductor packages. A semiconductor package includes a bridge with a hybrid layer on a high-density packaging (HDP) substrate, a plurality of dies over the bridge and the HDP substrate, and a plurality of through mold vias (TMVs) on the HDP substrate. The bridge is coupled between the dies and the HDP substrate. The bridge is directly coupled to two dies of the dies with the hybrid layer, where a top surface of the hybrid layer of the bridge is directly on bottom surfaces of the dies, and where a bottom surface of the bridge is directly on a top surface of the HDP substrate. The TMVs couple the HDP substrate to the dies, and have a thickness that is substantially equal to a thickness of the bridge. The hybrid layer includes conductive pads, surface finish, and/or dielectric.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, Kevin McCarthy, Leigh M. Tribolet, Debendra Mallik, Ravindranath V. Mahajan, Robert L. Sankman
  • Publication number: 20230260914
    Abstract: Embodiments include semiconductor packages and methods to form the semiconductor packages. A semiconductor package includes a bridge over a glass patch. The bridge is coupled to the glass patch with an adhesive layer. The semiconductor package also includes a high-density packaging (HDP) substrate over the bridge and the glass patch. The HDP substrate is conductively coupled to the glass patch with a plurality of through mold vias (TMVs). The semiconductor package further includes a plurality of dies over the HDP substrate, and a first encapsulation layer over the TMVs, the bridge, the adhesive layer, and the glass patch. The HDP substrate includes a plurality of conductive interconnects that conductively couple the dies to the bridge and glass patch. The bridge may be an embedded multi-die interconnect bridge (EMIB), where the EMIB is communicatively coupled to the dies, and the glass patch includes a plurality of through glass vias (TGVs).
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Sanka GANESAN, Kevin MCCARTHY, Leigh M. TRIBOLET, Debendra MALLIK, Ravindranath V. MAHAJAN, Robert L. SANKMAN
  • Patent number: 11694959
    Abstract: Embodiments include semiconductor packages and methods to form the semiconductor packages. A semiconductor package includes a bridge over a glass patch. The bridge is coupled to the glass patch with an adhesive layer. The semiconductor package also includes a high-density packaging (HDP) substrate over the bridge and the glass patch. The HDP substrate is conductively coupled to the glass patch with a plurality of through mold vias (TMVs). The semiconductor package further includes a plurality of dies over the HDP substrate, and a first encapsulation layer over the TMVs, the bridge, the adhesive layer, and the glass patch. The HDP substrate includes a plurality of conductive interconnects that conductively couple the dies to the bridge and glass patch. The bridge may be an embedded multi-die interconnect bridge (EMIB), where the EMIB is communicatively coupled to the dies, and the glass patch includes a plurality of through glass vias (TGVs).
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, Kevin McCarthy, Leigh M. Tribolet, Debendra Mallik, Ravindranath V. Mahajan, Robert L. Sankman
  • Publication number: 20230207475
    Abstract: Embodiments disclosed herein include chiplet modules and die modules. In an embodiment, a chiplet module comprises a first chiplet, where the first chiplet comprises a first active surface. In an embodiment the chiplet module further comprises a second chiplet, where the second chiplet comprises a second active surface. In an embodiment, the chiplet module further comprises a hybrid bonding interface between the first chiplet and the second chiplet, where the hybrid bonding interface electrically couples the first chiplet to the second chiplet.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Xavier F. BRUN, Sanka GANESAN, Debendra MALLIK
  • Publication number: 20230204879
    Abstract: In one embodiment, an optical module includes an electronic integrated circuit, a photonic integrated circuit, and a pluggable optical coupling connector. The photonic integrated circuit sends or receives optical signals. The pluggable optical coupling connector is adjacent to the photonic integrated circuit and includes a pluggable interface to optically couple a fiber array to the photonic integrated circuit. Further, the electronic integrated circuit, the photonic integrated circuit, and the pluggable optical coupling connector are all embedded in a mold.
    Type: Application
    Filed: December 24, 2021
    Publication date: June 29, 2023
    Applicant: Intel Corporation
    Inventors: Dowon Kim, Suohai Mei, Pooya Tadayon, Jason Michael Gamba, Sanka Ganesan
  • Publication number: 20230194778
    Abstract: Embodiments herein relate to systems, apparatuses, or processes for creating an integrated photonics package that includes a photonics IC, an electronic IC, and an optical coupling connector that are molded within a single package. In embodiments, caps may be used to protect optical components during manufacture. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Inventors: Dowon KIM, Suohai MEI, Jason M. GAMBA, Sanka GANESAN
  • Publication number: 20230134770
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Applicant: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Publication number: 20230138543
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra-fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die-to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: Debendra MALLIK, Robert L. SANKMAN, Robert NICKERSON, Mitul MODI, Sanka GANESAN, Rajasekaran SWAMINATHAN, Omkar KARHADE, Shawna M. LIFF, Amruthavalli ALUR, Sri Chaitra J. CHAVALI
  • Patent number: 11640942
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Publication number: 20230086691
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a microelectronic subassembly including a first bridge component in a first layer, the first bridge component having a first surface and an opposing second surface, and a die in a second layer, wherein the second layer is on the first layer, and the die is electrically coupled to the second surface of the first bridge component; a package substrate having a second bridge component embedded therein, wherein the second bridge component is electrically coupled to the first surface of the first bridge component; and a microelectronic component on the second surface of the package substrate and electrically coupled to the second bridge component, wherein the microelectronic component is electrically coupled to the die via the first and second bridge components.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Sriram Srinivasan, Sanka Ganesan, Timothy A. Gosselin
  • Publication number: 20230086356
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques directed to glass core-based substrates with an asymmetric number of front and back-side copper layers. In embodiments, the front and/or backside copper layers may be referred to as stack ups or as buildup layers on the glass core substrate. Embodiments may allow lower overall substrate layer counts by allowing for more front side layers where the signal routing may typically be highest, without requiring a matching, or symmetric, number of backside copper layers. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Andrew COLLINS, Srinivas V. PIETAMBARAM, Tarek A. IBRAHIM, Sanka GANESAN, Ram S. VISWANATH
  • Publication number: 20230089096
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques directed to packages that include one or more dies that are coupled with one or more glass layers. These glass layers may be within an interposer or a patch to which the one or more dies are attached. In addition, these glass layers may be used to facilitate pitch translation between the one or more dies proximate to a first side of the glass layer and a substrate proximate to a second side of the glass layer opposite the first side, to which the one or more dies are electrically coupled. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Andrew COLLINS, Srinivas V. PIETAMBARAM, Sanka GANESAN, Tarek A. IBRAHIM, Russell MORTENSEN
  • Publication number: 20230088170
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first die, having a first surface and an opposing second surface, in a first layer; a redistribution layer (RDL) on the first layer, wherein the RDL is electrically coupled to the second surface of the first die by solder interconnects, and a second die in a second layer on the RDL, wherein the second die is electrically coupled to the RDL by non-solder interconnects.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Xavier Francois Brun, Sanka Ganesan, Holly Sawyer, William J. Lambert, Timothy A. Gosselin, Yuting Wang