Patents by Inventor Sara S. Baghsorkhi

Sara S. Baghsorkhi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190332903
    Abstract: One embodiment provides for a compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction that specifies multiple operands including a multi-bit input value and a bipolar binary weight associated with a neural network and an arithmetic logic unit including a multiplier, an adder, and an accumulator register. To execute the decoded instruction, the multiplier is to perform a multiplication operation on the multi-bit input based on the bipolar binary weight to generate an intermediate product and the adder is to add the intermediate product to a value stored in the accumulator register and update the value stored in the accumulator register.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Applicant: Intel Corporation
    Inventors: Kevin Nealis, Anbang Yao, Xiaoming Chen, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha
  • Publication number: 20190304053
    Abstract: Embodiments described herein provide a graphics processor that can perform a variety of mixed and multiple precision instructions and operations. One embodiment provides a streaming multiprocessor that can concurrently execute multiple thread groups, wherein the streaming multiprocessor includes a single instruction, multiple thread (SIMT) architecture and the streaming multiprocessor is to execute multiple threads for each of multiple instructions. The streaming multiprocessor can perform concurrent integer and floating-point operations and includes a mixed precision core to perform operations at multiple precisions.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 3, 2019
    Applicant: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Publication number: 20190295211
    Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, at training time, information relating to one or more tasks to be performed according to a training dataset relating to a processor including a graphics processor. The method may further include analyzing the information to determine one or more portions of hardware relating to the processor capable of supporting the one or more tasks, and configuring the hardware to pre-select the one or more portions to perform the one or more tasks, while other portions of the hardware remain available for other tasks.
    Type: Application
    Filed: April 8, 2019
    Publication date: September 26, 2019
    Applicant: Intel Corporation
    Inventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Kamal Sinha, Joydeep Ray, Balaji Vembu, Sanjeev Jahagirdar, Vasanth Ranganathan, Dukhwan Kim
  • Patent number: 10417731
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: September 17, 2019
    Assignee: INTEL CORPORATION
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Patent number: 10417734
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a memory device including a first integrated circuit (IC) including a plurality of memory channels and a second IC including a plurality of processing units, each coupled to a memory channel in the plurality of memory channels.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 17, 2019
    Assignee: INTEL CORPORATION
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Patent number: 10409603
    Abstract: A processor of an aspect includes a decode unit to decode an instruction. The instruction is to indicate a source memory address information, and is to indicate a destination architecturally-visible storage location. The processor also includes an execution unit coupled with the decode unit. The execution unit, in response to the instruction, is to store a result in the destination architecturally-visible storage location. The result to indicate whether a logical memory address corresponding to the source memory address information is in a persistent memory. Other processors, methods, systems, and instructions are disclosed.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Sara S. Baghsorkhi, Christos Margiolas
  • Patent number: 10410098
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the apparatus comprising a decode unit to decode a single instruction into a decoded instruction that specifies multiple operands including an input value and a quantized weight value associated with a neural network and an arithmetic logic unit including a barrel shifter, an adder, and an accumulator register, wherein to execute the decoded instruction, the barrel shifter is to shift the input value by the quantized weight value to generate a shifted input value and the adder is to add the shifted input value to a value stored in the accumulator register and update the value stored in the accumulator register.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Kevin Nealis, Anbang Yao, Xiaoming Chen, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha
  • Patent number: 10402177
    Abstract: Methods and systems to convert a scalar computer program loop having loop-carried dependences into a vector computer program loop are disclosed. One such method includes, at runtime, identifying, by executing an instruction with one or more processors, a first loop iteration that cannot be executed in parallel with a second loop iteration due to a set of conflicting scalar loop operations. The first loop iteration is executed after the second loop iteration. The method also includes sectioning, by executing an instruction with one or more processors, a vector loop into vector partitions including a first vector partition. The first vector partition executes consecutive loop iterations in parallel and the consecutive loop iterations start at the second loop iteration and end before the first loop iteration.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: September 3, 2019
    Assignee: INTEL CORPORATION
    Inventors: Jayashankar Bharadwaj, Nalini Vasudevan, Albert Hartono, Sara S. Baghsorkhi
  • Publication number: 20190243764
    Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 8, 2019
    Applicant: Intel Corporation
    Inventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
  • Publication number: 20190206020
    Abstract: One embodiment provides an accelerator module comprising a memory stack including multiple memory dies; a graphics processing unit (GPU) coupled with the memory stack via one or more memory controllers, the GPU including a plurality of multiprocessors having a single instruction, multiple thread (SIMT) architecture, the multiprocessors to execute at least one single instruction. The at least one single instruction is to cause at least a portion of the GPU to perform a floating point operation on input having differing precisions. The floating point operation is a two-dimensional matrix multiply and accumulate operation.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 4, 2019
    Applicant: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Patent number: 10324768
    Abstract: Embodiments described herein utilize restricted transactional memory (RTM) instructions to implement speculative compile time optimizations that will be automatically rolled back by hardware in the event of a missed speculation. In one embodiment, a lightweight version of RTM for speculative compiler optimization is described to provide lower operational overhead in comparison to conventional RTM implementations used when performing SLE.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 18, 2019
    Assignee: Intel Corporation
    Inventors: Cheng Wang, Youfeng Wu, Sara S. Baghsorkhi, Albert Hartono, Robert Valentine
  • Patent number: 10304154
    Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, at training time, information relating to one or more tasks to be performed according to a training dataset relating to a processor including a graphics processor. The method may further include analyzing the information to determine one or more portions of hardware relating to the processor capable of supporting the one or more tasks, and configuring the hardware to pre-select the one or more portions to perform the one or more tasks, while other portions of the hardware remain available for other tasks.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 28, 2019
    Assignee: Intel Corporation
    Inventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Kamal Sinha, Joydeep Ray, Balaji Vembu, Sanjeev Jahagirdar, Vasanth Ranganathan, Dukhwan Kim
  • Publication number: 20190139182
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 9, 2019
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Patent number: 10261903
    Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 16, 2019
    Assignee: INTEL CORPORATION
    Inventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
  • Patent number: 10242423
    Abstract: One embodiment provides an accelerator module comprising a memory stack including multiple memory dies; a graphics processing unit (GPU) coupled with the memory stack via one or more memory controllers, the GPU including a plurality of multiprocessors having a single instruction, multiple thread (SIMT) architecture, the multiprocessors to execute at least one single instruction; the at least one single instruction to cause at least a portion of the GPU to perform a floating-point operation on input having differing precisions; and the floating-point operation is a two-dimensional matrix multiply and accumulate operation.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 26, 2019
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Patent number: 10186011
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Publication number: 20180314249
    Abstract: A mechanism is described for facilitating storage management for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting one or more components associated with machine learning, where the one or more components include memory and a processor coupled to the memory, and where the processor includes a graphics processor. The method may further include allocating a storage portion of the memory and a hardware portion of the processor to a machine learning training set, where the storage and hardware portions are precise for implementation and processing of the training set.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Abhishek R. Appu, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Kamal Sinha, Joydeep Ray, Balaji Vembu, Mike B. Macpherson, Linda L. Hurd, Sanjeev Jahagirdar, Vasanth Ranganathan
  • Publication number: 20180315159
    Abstract: One embodiment provides an accelerator module comprising a memory stack including multiple memory dies; a graphics processing unit (GPU) coupled with the memory stack via one or more memory controllers, the GPU including a plurality of multiprocessors having a single instruction, multiple thread (SIMT) architecture, the multiprocessors to execute at least one single instruction; the at least one single instruction to cause at least a portion of the GPU to perform a floating-point operation on input having differing precisions; and the floating-point operation is a two-dimensional matrix multiply and accumulate operation.
    Type: Application
    Filed: October 20, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Publication number: 20180315157
    Abstract: One embodiment provides a general-purpose graphics processing unit comprising a dynamic precision floating-point unit including a control unit having precision tracking hardware logic to track an available number of bits of precision for computed data relative to a target precision, wherein the dynamic precision floating-point unit includes computational logic to output data at multiple precisions.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben . Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Publication number: 20180315158
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao