Patents by Inventor Saravanan Kuppan

Saravanan Kuppan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11268711
    Abstract: An electrostatic charging air cleaning device having first and second pre-chargers. The first pre-charger is configured to generate a first corona discharge to electrostatically charge PM in the incoming air stream with a first charge to form a first exiting air stream exiting the first pre-charger. The second pre-charger is configured to generate a second corona discharge to electrostatically charge PM in the incoming air stream with a second charge to form a second exiting air stream exiting the second pre-charger. The device also includes a separator having apertures such that PM in the second exiting air stream passes through the separator to agglomerate with PM in the first exiting air stream to form agglomerated particles. The apertures are sized such that the agglomerated particles are larger than the apertures to preclude the agglomerated particles from reentering the second exiting air stream.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 8, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig, Christina Johnston, Jake Christensen
  • Publication number: 20210399315
    Abstract: A fuel cell includes a flow field plate having at least one channel and at least one land, where each of the at least one channel is positioned between two adjacent lands. The fuel cell further includes a gas diffusion layer (GDL) positioned between the flow field plate and a catalyst layer, where the catalyst layer has a first region aligned with the at least one channel and a second region aligned with the at least one land. The first region may have a first catalyst material supported by a first catalyst support region, and the second region may have a second catalyst material supported by a second catalyst support region.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Inventors: Lei CHENG, Michael METZGER, Saravanan KUPPAN, Christina JOHNSTON
  • Publication number: 20210280914
    Abstract: A method of co-extruding battery components includes forming a first thin film battery component via hot melt extrusion, and forming a second thin film battery component via hot melt extrusion. A surface treatment is applied to a surface region of at least one of the first and second components so that, relative to a remainder of the at least one component, the surface region has at least one of a decreased inter-particle distance, a decreased amount of polymer binder material, and an increased amount of exposed ionically conductive material. The first and second components are fed through a co-extrusion die to form a co-extruded multilayer thin film.
    Type: Application
    Filed: February 26, 2019
    Publication date: September 9, 2021
    Inventors: Ram Subbaraman, Saravanan Kuppan
  • Publication number: 20210198124
    Abstract: An electrochemical water cleaning device including one or more deionization cells having a membrane electrode assembly including a first electrode compartment separated by an anion exchange membrane from a second electrode compartment, each of the first and second compartments configured to contain an intercalation host electrode, a first water stream compartment separated by the membrane electrode assembly from a second water stream compartment, each of the first and second water stream compartments configured to contain a saline water solution and arranged to be in respective fluid communication with the first and second electrode compartments.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Inventors: Michael Metzger, Soo Kim, Saravanan Kuppan, Sondra Hellstrom, Jake Christensen
  • Publication number: 20210194030
    Abstract: A fuel cell including an anode side including an anode, an anode side gas diffusion layer and an anode side bipolar plate formed of a first metal material, and a cathode side including a cathode, a cathode side gas diffusion layer and a cathode side bipolar plate formed of a second metal material. The fuel cell also includes a membrane having first and second sides positioned between the anode and cathode sides. The fuel cell further includes an intercalation host situated in the anode and/or cathode sides. The intercalation host is configured to intercalate metal ions formed from the first and/or second metal materials.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Saravanan KUPPAN, Michael METZGER, M√ľnir M. BESLI, Sondra HELLSTROM, Thilo LEHRE, Jake CHRISTENSEN
  • Publication number: 20210167421
    Abstract: A solid state electrolyte material including a decontaminated lithium conducting ceramic oxide material including a decontaminated surface thickness. The decontaminated surface thickness is less than or equal to 5 nm. The decontaminated surface thickness may be greater than or equal to 1 nm. The decontaminated lithium conducting ceramic oxide material may be selected from the group consisting of Li7La3Zr2O12 (LLZO), Li5La3Ta2O12 (LLTO), Li6La2CaTa2O12 (LLCTO), Li6La2ANb2O12 (A is Ca or Sr), Li1+xAlxGe2-x(PO4)3 (LAGP), Li14Al0.4(Ge2-xTix)1.6(PO4)3 (LAGTP), perovskite Li3xLa2/3-xTiO3 (LLTO), Li0.8La0.6Zr2(PO4)3 (LLZP), Li1+xTi2-xAlx(PO4)3 (LTAP), Li1+x+yTi2-xAlxSiy(PO4)3-y (LTASP), LiTixZr2-x(PO4)3 (LTZP), Li2Nd3TeSbO12 and mixtures thereof.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Saravanan KUPPAN, Katherine HARRY, Michael METZGER, Nathan CRAIG, Jake CHRISTENSEN
  • Publication number: 20210143430
    Abstract: A solid-state composite electrode includes active electrode particles, ionically conductive particles, and electrically conductive particles. Each of the ionically conductive particles is at least partially coated with an isolation material that inhibits inter-diffusion of the ionically conductive particles with the active electrode particles. A battery cell includes a first current collector, a solid electrolyte layer, a first solid-state composite electrode having ionically conductive particles coated with an isolation material and positioned between the first current collector and the solid electrolyte layer, a second current collector, and a second electrode positioned between the solid electrolyte layer and the second current collector. A method of forming a solid-state composite electrode includes mixing together active electrode particles and electrically conductive particles with ionically conductive particles that are each at least partially coated with an isolation material.
    Type: Application
    Filed: September 21, 2018
    Publication date: May 13, 2021
    Inventors: John F. Christensen, Nathan P. Craig, Sondra Hellstrom, Boris Kozinsky, Saravanan Kuppan
  • Patent number: 10988391
    Abstract: A desalination battery includes a container configured to contain a saline water solution having a first concentration c1 of dissolved salts; first and second intercalation hosts, arranged to be in fluid communication with the saline water solution, at least the first intercalation host including expanded graphite having a plurality of graphene layers with an interlayer spacing between the graphene layers in z-direction greater than 0.34 nm; and a power source configured to supply electric current to the first and second intercalation hosts such that the first and second intercalation hosts reversibly store and release cations and anions from the saline water solution located between the plurality of graphene layers to generate a fresh water solution having a second concentration c2 of dissolved salts and a brine solution having a third concentration c3 of dissolved salts within the container such that c3>c1>c2.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 27, 2021
    Assignee: ROBERT BOSCH GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Mordechai Kornbluth, Georgy Samsonidze, Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Patent number: 10923765
    Abstract: A method of decontaminating a lithium conducting ceramic oxide material. The method includes soaking the lithium conducting ceramic oxide material having a first thickness of surface contaminants in a first organic solvent containing an inorganic salt at an inorganic salt concentration to obtain a soaked lithium conducting ceramic oxide material. The method further includes rinsing the soaked lithium conducting ceramic oxide material in a second organic solvent to obtain a decontaminated lithium conducting ceramic oxide material having a second thickness of surface contaminants less than the first thickness of surface contaminants.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: February 16, 2021
    Assignee: ROBERT BOSCH GMBH
    Inventors: Saravanan Kuppan, Katherine Harry, Michael Metzger, Nathan Craig, Jake Christensen
  • Publication number: 20210039970
    Abstract: A desalination battery includes a working intercalation electrode in a first compartment, a counter intercalation electrode in a second compartment, both compartments including saline water solution with an elevated concentration of dissolved salts, an ion exchange membrane arranged between the compartments, a voltage source arranged to supply voltage to the electrodes, and a sacrificial compound configured to neutralize charge within the first compartment at a predetermined voltage while being consumed by oxidation or reduction reactions upon an activation of the working electrode.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 11, 2021
    Inventors: Michael METZGER, Soo KIM, Saravanan KUPPAN, Sondra HELLSTROM, Christina JOHNSTON, Nathan CRAIG, Jake CHRISTENSEN
  • Publication number: 20200399149
    Abstract: A desalination battery cell includes a first compartment separated by an anion exchange membrane from a second compartment, each of the first and second compartments configured to contain a saline water solution having a concentration of dissolved salts c1 and having first and second intercalation host electrodes, respectively, arranged to be in fluid communication with the solution, a voltage source configured to supply electric current to the first and second intercalation host electrodes to release cations into the solution, and a controller programmed to adjust an amount of the electric current being supplied to change direction of anions, present in the solution, passing through the anion exchange membrane between the first and second compartments such that the first and second compartments alternately collect and disperse salt from the solution and the first and second compartments release desalinated water solution having a concentration c2 of dissolved salts and a brine solution having a concentration
    Type: Application
    Filed: June 21, 2019
    Publication date: December 24, 2020
    Inventors: Soo KIM, Michael METZGER, Jonathan MAILOA, Mordechai KORNBLUTH, Georgy SAMSONIDZE, Saravanan KUPPAN, Sondra HELLSTROM, Boris KOZINSKY, Nathan CRAIG, Jake CHRISTENSEN
  • Publication number: 20200212483
    Abstract: A method of decontaminating a lithium conducting ceramic oxide material. The method includes soaking the lithium conducting ceramic oxide material having a first thickness of surface contaminants in a first organic solvent containing an inorganic salt at an inorganic salt concentration to obtain a soaked lithium conducting ceramic oxide material. The method further includes rinsing the soaked lithium conducting ceramic oxide material in a second organic solvent to obtain a decontaminated lithium conducting ceramic oxide material having a second thickness of surface contaminants less than the first thickness of surface contaminants.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Saravanan KUPPAN, Katherine HARRY, Michael METZGER, Nathan CRAIG, Jake CHRISTENSEN
  • Publication number: 20200212455
    Abstract: An anticorrosive and conductive substrate includes a bulk portion and a surface portion including a magnesium titanium material having a formula (I) TixMg1-xOy (I), where x is a number from 0 to ?1 and y is a number from 1 to ?2, and wherein at least about 50% of the magnesium titanium material has a cubic crystal structure, and wherein the magnesium titanium material is configured to impart anticorrosive and conductive properties to the substrate.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Mordechai KORNBLUTH, Soo KIM, Jonathan MAILOA, Lei CHENG, Georgy SAMSONIDZE, Boris KOZINSKY, Nathan CRAIG, Saravanan KUPPAN, Sondra HELLSTROM, Jake CHRISTENSEN
  • Publication number: 20200207646
    Abstract: A desalination battery includes a container configured to contain a saline water solution having a first concentration c1 of dissolved salts; first and second intercalation hosts, arranged to be in fluid communication with the saline water solution, at least the first intercalation host including expanded graphite having a plurality of graphene layers with an interlayer spacing between the graphene layers in z-direction greater than 0.34 nm; and a power source configured to supply electric current to the first and second intercalation hosts such that the first and second intercalation hosts reversibly store and release cations and anions from the saline water solution located between the plurality of graphene layers to generate a fresh water solution having a second concentration c2 of dissolved salts and a brine solution having a third concentration c3 of dissolved salts within the container such that c3>c1>c2.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Soo KIM, Jonathan MAILOA, Mordechai KORNBLUTH, Georgy SAMSONIDZE, Michael METZGER, Saravanan KUPPAN, Sondra HELLSTROM, Boris KOZINSKY, Nathan CRAIG
  • Publication number: 20200200408
    Abstract: An electrostatic charging air cleaning device having first and second pre-chargers. The first pre-charger is configured to generate a first corona discharge to electrostatically charge PM in the incoming air stream with a first charge to form a first exiting air stream exiting the first pre-charger. The second pre-charger is configured to generate a second corona discharge to electrostatically charge PM in the incoming air stream with a second charge to form a second exiting air stream exiting the second pre-charger. The device also includes a separator having apertures such that PM in the second exiting air stream passes through the separator to agglomerate with PM in the first exiting air stream to form agglomerated particles. The apertures are sized such that the agglomerated particles are larger than the apertures to preclude the agglomerated particles from reentering the second exiting air stream.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Michael METZGER, Saravanan KUPPAN, Sondra HELLSTROM, Nathan CRAIG, Christina JOHNSTON, Jake CHRISTENSEN
  • Publication number: 20200197953
    Abstract: A method of forming a collection electrode for an electrostatic charging air cleaning device. The method includes forming a slurry including a carbon black powder material, a polymeric binder material and a liquid solvent material. The method further includes applying the slurry to a substrate material. The method also includes curing the slurry to obtain a coating layer on the substrate material to form the collection electrode.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Michael METZGER, Saravanan KUPPAN, Sondra HELLSTROM, Nathan CRAIG, Christina JOHNSTON, Jake CHRISTENSEN
  • Publication number: 20200148560
    Abstract: A device for removing ions from a flow of water includes a first electrode and a counter-electrode opposite the first electrode in the flow of water. The first electrode contains at least one material which is capable of intercalating one or both of Mg2+ and Ca2+ ions in the flow of water. The counter-electrode can include a material capable of binding to anions in the flow of water.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 14, 2020
    Inventors: Sondra Hellstrom, Michael Metzger, Saravanan Kuppan, Jake Christensen
  • Publication number: 20200123028
    Abstract: A desalination battery includes a first electrode, a second electrode, an intercalation compound contained in the first electrode, a container configured to contain a saline water solution, and a power source. The intercalation compound includes at least one of a metal oxide, a metalloid oxide, a metal oxychloride, a metalloid oxychloride, and a hydrate thereof with each having a ternary or higher order. The first and second electrodes are configured to be arranged in fluid communication with the saline water solution. The power source is configured to supply electric current to the first and second electrodes in different operating states to induce a reversible intercalation reaction within the intercalation compound. The intercalation compound reversibly stores and releases target anions from the saline water solution to generate a fresh water solution in one operating state and a wastewater solution in another operating state.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 23, 2020
    Inventors: Soo Kim, Mordechai Kornbluth, Jonathan Mailoa, Georgy Samsonidze, Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Publication number: 20200123027
    Abstract: A water softening device includes a container configured to contain water, first and second electrodes arranged in fluid communication with the water, and a power source. The first electrode includes a conversion material that has a first composition and a second composition coexisting with the first composition. The first composition includes calcium ions bonded thereto and the second composition includes sodium ions bonded thereto. The power source supplies current in a first operating state such that the second composition exchanges sodium ions for calcium ions in the water to generate a soft water solution. The first and second electrodes are connected in a second operating state such that the first composition exchanges calcium ions for sodium ions in the water to generate a wastewater solution. The conversion material undergoes a reversible conversion reaction to convert between the first and second compositions within the water stability window.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 23, 2020
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Publication number: 20200123029
    Abstract: A device for removing chloride-containing salts from water includes a container configured to contain saline water, a first electrode arranged in fluid communication with the saline water, and a power source. The first electrode includes a conversion material that is substantially insoluble in the saline water and has a composition that includes at least two or more of aluminum, chlorine, copper, iron, oxygen, and potassium. The composition varies over a range with respect to a quantity of chloride ions per formula unit. The power source supplies current to the first electrode in a first operating state so as to induce a reversible conversion reaction in which the conversion material bonds to the chloride ions in the saline water to generate a treated water solution. The conversion material dissociates the chloride ions therefrom into the saline water solution in a second operating state to generate a wastewater solution.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 23, 2020
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig