Patents by Inventor Satya THOKACHICHU

Satya THOKACHICHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230170190
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Abdul Aziz KHAJA, Vinay K. PRABHAKAR
  • Patent number: 11569072
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Abdul Aziz Khaja, Vinay K. Prabhakar
  • Patent number: 10923334
    Abstract: One or more embodiments described herein generally relate to selective deposition of substrates in semiconductor processes. In these embodiments, a precursor is delivered to a process region of a process chamber. A plasma is generated by delivering RF power to an electrode within a substrate support surface of a substrate support disposed in the process region of the process chamber. In embodiments described herein, delivering the RF power at a high power range, such as greater than 4.5 kW, advantageously leads to greater plasma coupling to the electrode, resulting in selective deposition to the substrate, eliminating deposition on other process chamber areas such as the process chamber side walls. As such, less process chamber cleans are necessary, leading to less time between depositions, increasing throughput and making the process more cost-effective.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Sarah Michelle Bobek, Abdul Aziz Khaja, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee
  • Publication number: 20190341227
    Abstract: One or more embodiments described herein generally relate to selective deposition of substrates in semiconductor processes. In these embodiments, a precursor is delivered to a process region of a process chamber. A plasma is generated by delivering RF power to an electrode within a substrate support surface of a substrate support disposed in the process region of the process chamber. In embodiments described herein, delivering the RF power at a high power range, such as greater than 4.5 kW, advantageously leads to greater plasma coupling to the electrode, resulting in selective deposition to the substrate, eliminating deposition on other process chamber areas such as the process chamber side walls. As such, less process chamber cleans are necessary, leading to less time between depositions, increasing throughput and making the process more cost-effective.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 7, 2019
    Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Sarah Michelle BOBEK, Abdul Aziz KHAJA, Vinay K. PRABHAKAR, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE
  • Publication number: 20190341232
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Application
    Filed: April 23, 2019
    Publication date: November 7, 2019
    Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Abdul Aziz KHAJA, Vinay K. PRABHAKAR