Patents by Inventor Scott C. Hornbostel

Scott C. Hornbostel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100238762
    Abstract: A method and apparatus for evaluating submarine formations, such as geological formations located generally under a body of water. Multiple hydrofoils (130), responding to moving water, hydrodynamic, or Bernoulli forces, provide controllable orientation and separation for multiple receivers (135) as they are towed (125) through water (110) in the course of a geophysical survey such as a controlled source electromagnetic survey. The inventive method can be used to provide mutual orthogonality for three antennas in a multiple component electromagnetic receiver.
    Type: Application
    Filed: October 30, 2008
    Publication date: September 23, 2010
    Inventor: Scott C. Hornbostel
  • Publication number: 20100233955
    Abstract: Method for reducing air wave and/or magnetotelluric noise in controlled source electromagnetic surveying by either shielding the source (61) from the air interface, shielding the receivers from downward traveling electromagnetic energy, or by employing a second source (62) to preferentially cancel the air wave (and MT) part of the signal, or a combination of the preceding.
    Type: Application
    Filed: October 27, 2006
    Publication date: September 16, 2010
    Inventors: Scott C. Hornbostel, Warren S. Ross, Leonard J. Srnka
  • Publication number: 20100039114
    Abstract: A method for designing a controlled-source electromagnetic survey that will discriminate between a defined deep marginal-interest reservoir (2) and specified false positive resistivity structures of concern (3, 4, 5). A reservoir model and a false positive model are constructed for each false positive scenario. The resistivity of the false positive model may be tuned to give electromagnetic data similar enough to the reservoir model when forward modeled that any differences fall in the model null space. A null-space discriminating ratio (“NSDR”) is defined, for example as the peak normalized difference of the two related modeled electromagnetic field data sets. An area coverage display of NSDR values (6) allows determination of such additional data as may be needed to distinguish the false positive body, and a survey design is developed accordingly (7). Reduction of the number of variables affecting the area coverage displays is a key feature of the method.
    Type: Application
    Filed: April 2, 2008
    Publication date: February 18, 2010
    Inventors: Scott C Hornbostel, Kenneth E. Green
  • Publication number: 20090243613
    Abstract: A method and apparatus of constructing a signal for a controlled source electromagnetic survey is described. In one embodiment, a method is described that includes determining a first waveform and a second waveform, the first waveform and second waveform related to a combined frequency spectrum and bandwidth associated with a geophysical survey line. Then, a signal is constructed by sequencing the first waveform with the second waveform. This signal may be utilized in a transmitter, which may be pulled by a vessel along the geophysical survey line.
    Type: Application
    Filed: August 28, 2006
    Publication date: October 1, 2009
    Inventors: Xinyou Lu, Scott C. Hornbostel, Dennis E. Willen
  • Patent number: 7573780
    Abstract: Method for survey design including configuring electrodes to reduce near-surface noise in the seismic response from an electroseismic survey of a subterranean formation. Different embodiments of the invention include (1) selective measurement of the surface noise to remove it from the data; (2) suppressing surface noise generation by reducing electric fields in the vicinity of some of the electrodes; (3) creating source signature differences between the near-surface seismic response and the deep response enabling the near surface response to be removed in data processing; (4) applying an external near-surface magnetic field to modulate the near-surface seismic response, enabling it to be removed in processing; and (5) constructing a partial Faraday cage to shield a near-surface region from fields generated by the electrodes.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 11, 2009
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Arthur H. Thompson, Scott C. Hornbostel
  • Patent number: 6664788
    Abstract: A method for seismic exploration using nonlinear conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, seismic returns from a source waveform are correlated with a reference waveform, with both waveforms custom designed to minimize both correlation side lobes and interference from linear electroseismic effects. A waveform element is selected which may be sequenced by a binary or similar digital code embodying the desired custom design to generate an input sweep with the needed depth penetration and noise suppression. Correlation of the seismic response with the reference waveform in a data processing step mathematically aggregates the seismic response from the input sweep into a single wavelet. Preferred binary digital codes include prescribed variations of maximal length shift-register sequences. Also, an apparatus for generating the desired waveforms.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: December 16, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Scott C. Hornbostel, Arthur H. Thompson, Thomas C. Halsey, Robert A. Raschke, Clint A. Davis
  • Publication number: 20020181326
    Abstract: A method for seismic exploration using nonlinear conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, seismic returns from a source waveform are correlated with a reference waveform, with both waveforms custom designed to minimize both correlation side lobes and interference from linear electroseismic effects. A waveform element is selected which may be sequenced by a binary or similar digital code embodying the desired custom design to generate an input sweep with the needed depth penetration and noise suppression. Correlation of the seismic response with the reference waveform in a data processing step mathematically aggregates the seismic response from the input sweep into a single wavelet. Preferred binary digital codes include prescribed variations of maximal length shift-register sequences. Also, an apparatus for generating the desired waveforms.
    Type: Application
    Filed: April 22, 2002
    Publication date: December 5, 2002
    Inventors: Scott C. Hornbostel, Arthur H. Thompson, Thomas C. Halsey, Robert A. Raschke, Clint A. Davis
  • Patent number: 6477113
    Abstract: A method for seismic exploration using conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, source waveforms are correlated with reference waveforms selected to minimize correlation side lobes. Line power at 60 Hz may be used to provide a waveform element which may be sequenced by a binary code to generate an extended source waveform segment with minimal correlation side lobes. Preferred binary codes include Golay complementary pairs and maximal length shift-register sequences.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: November 5, 2002
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Scott C. Hornbostel, Arthur H. Thompson
  • Publication number: 20010046185
    Abstract: A method for seismic exploration using conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, source waveforms are correlated with reference waveforms selected to minimize correlation side lobes. Line power at 60 Hz may be used to provide a waveform element which may be sequenced by a binary code to generate an extended source waveform segment with minimal correlation side lobes. Preferred binary codes include Golay complementary pairs and maximal length shift-register sequences.
    Type: Application
    Filed: March 15, 2001
    Publication date: November 29, 2001
    Inventors: Scott C. Hornbostel, Arthur H. Thompson
  • Patent number: 6219621
    Abstract: A method of sparse hyperbolic inversion is used to suppress multiples in marine seismic data. By explicitly including the two-way water-bottom reflection traveltime and water-bottom reflection coefficient as part of an augmented model domain, the inversion may be successfully carried out even for intermediate water depths and sloping water bottoms. Linear noises can also be suppressed by appropriate definition of the model. The invention also has the capability of handling time-varying wavelets or several different wavelets simultaneously. This latter capability is useful in suppressing dispersive ground roll on land seismic data.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: April 17, 2001
    Assignee: ExxonMobil Upstream Research Co.
    Inventor: Scott C. Hornbostel
  • Patent number: 5517463
    Abstract: Disclosed is a method of determining the optimal spacing of seismic receiver lines, including marine streamers. A weighted squared error function is defined between a desired array response function and an actual response function, and the error function is minimized to determine the values of crossline offsets between streamers as well as the depths of the streamers in a configuration to minimize out-of-plane signal effects, for example.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: May 14, 1996
    Assignee: Exxon Production Research Company
    Inventors: Scott C. Hornbostel, Stanley V. Morris
  • Patent number: 4995008
    Abstract: A method is disclosed for detecting the presence or absence of anisotropy in a subterranean geological formation and for determining its orientation. In a first preferred embodiment, the method utilizes a seismic source which generates circularly polarized shear waves and directs them to a target formation. These waves undergo wave splitting on encountering anisotropic conditions and the resulting components are linearly polarized and are reflected to the surface or to a bore hole where they are detected by receivers. The reflected arrivals are then analyzed to detect the presence and orientation of the linearly polarized arrivals as is known in the prior art. In an alternative preferred embodiment, the use of a circularly polarized source is simulated by generating two orthogonal waves linearly polarized 90.degree. out of phase with respect to each other.
    Type: Grant
    Filed: December 27, 1989
    Date of Patent: February 19, 1991
    Assignee: Exxon Production Research Company
    Inventors: Scott C. Hornbostel, Azik I. Perelberg
  • Patent number: 4964098
    Abstract: A method for seismic trace interpolation by dip range analysis is disclosed. In the preferred embodiment, a series of dip ranges are defined by a plurality of dips. A trace estimate for each of the dip ranges is generated by filtering with a mathematically integrated time shift in each frequency component of each seismic trace appearing in the dip range. These filtered frequency components are then passed through a low pass filter. The sum of the filtered frequency components is the trace estimate. The seismic traces are then demodulated to obtain the trace envelopes whose values along the above mentioned dips are examined for continuity. A continuity factor is developed for each dip and then each of the continuity factors is summed and the sum divided by the number of continuity factors to obtain a weighting function. The weighting functions are multiplied with the trace estimates, and the results summed to obtain the interpolated trace.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: October 16, 1990
    Assignee: Exxon Production Research Company
    Inventor: Scott C. Hornbostel
  • Patent number: 4809238
    Abstract: A method for restoring to filtered seismic data at least some of the ramdom background noise associated with the data in its form prior to filtering. The method includes the steps of filtering seismic data in a two-dimensional filter; generating a noise signal representing the random background noise associated with the data; filtering the noise signal in an inverse filter corresponding to the two-dimensional filter; and adding the inverse-filtered first signal to the filtered seismic data. In one embodiment, the noise signal is generated by filtering a copy of the data in a least-mean-squares adaptive filter to remove substantially all coherent energy therefrom. In another embodiment, the noise signal is an independently generated white noise signal having beginning and end times matching those of the seismic data. This white noise signal is the bandpass filtered to cause its frequency content to match that of the seismic data.
    Type: Grant
    Filed: March 14, 1986
    Date of Patent: February 28, 1989
    Assignee: Exxon Production Research Company
    Inventors: Glen W. Bishop, Scott C. Hornbostel
  • Patent number: RE40475
    Abstract: A method for seismic exploration using conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, source waveforms are correlated with reference waveforms selected to minimize correlation side lobes. Line power at 60 Hz may be used to provide a waveform element which may be sequenced by a binary code to generate an extended source waveform segment with minimal correlation side lobes. Preferred binary codes include Golay complementary pairs and maximal length shift-register sequences.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: September 2, 2008
    Assignee: Exxon Mobil Upstream Research Company
    Inventors: Scott C. Hornbostel, Arthur H. Thompson