Patents by Inventor Scott Lee Wellington

Scott Lee Wellington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8491783
    Abstract: A process for treating a hydrocarbon-containing feed in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product, where hydrogen sulfide is provided at a mole ratio relative to hydrogen of at least 0.5:9.5. The catalyst is comprised of a bimetallic tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ph, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott-Lee Wellington
  • Patent number: 8485252
    Abstract: An oil shale formation may be treated using an in situ thermal process. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat input into the formation may be controlled to raise the temperature of portion at a selected rate during pyrolysis of hydrocarbons within the formation. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: July 16, 2013
    Assignee: Shell Oil Company
    Inventors: Eric Pierre de Rouffignac, Ilya Emil Berchenko, Thomas David Fowler, Robert Charles Ryan, Gordon Thomas Shahin, Jr., George Leo Stegemeier, Harold J. Vinegar, Scott Lee Wellington, Etuan Zhang
  • Patent number: 8475651
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The one or more catalysts may include a catalyst that has a median pore diameter of at least 90 ?. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 2, 2013
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8450538
    Abstract: A hydrocarbon composition is described herein. The hydrocarbon composition has a relatively low viscosity and a relatively low oxygen content while having a relatively high vanadium, nickel, and iron metals content, and a relatively high distillate, residue, and micro-carbon residue content.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: May 28, 2013
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8394254
    Abstract: A crude product composition is provided. The crude product composition contains from 0.001 wt. % to 5 wt. % residue. The crude product composition contains hydrocarbons having a boiling point in the ranges of at most 204° C., from 204° C. to 300° C., from 300° C. to 400° C., and from 400° C. to 538° C. The hydrocarbons boiling in a range of at most 204° C. comprise paraffins, where the paraffins comprise iso-paraffins and n-paraffins, and the weight ratio of iso-paraffins to n-paraffins is at most 1.4.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: March 12, 2013
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Patent number: 8372777
    Abstract: Method of contacting a hydrocarbon feed with a catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 340 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ? or the catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 12, 2013
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8361397
    Abstract: A method of preparing an oxidant stream comprising: burning a combustion mixture comprising (a) one or more fuel composition and (b) oxidant comprising a first oxygen content of about 10 mole % or more and a first carbon dioxide (CO2) gas content of about 68 mole % or more on a dry basis, the burning producing a flue gas comprising CO2 gas, water vapor, and unreacted oxygen; separating from the flue gas a recycle stream; mixing at least a portion of the recycle stream having a first pressure with a sufficient amount of an oxygen stream having a second pressure which is sufficiently higher than the first pressure to entrain at least a portion of the recycle stream in the oxidant stream and to produce the oxidant stream having a second oxygen content of 10 mole % or more and a second CO2 gas content of about 68 mole % or more on a dry basis.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 29, 2013
    Assignee: Shell Oil Company
    Inventors: Walter Farman Farmayan, Abu Saeed Jamaluddin, Mahendra L Joshi, Scott Lee Wellington
  • Publication number: 20130008660
    Abstract: An oil shale formation may be treated using an in situ thermal process. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat input into the formation may be controlled to raise the temperature of portion at a selected rate during pyrolysis of hydrocarbons within the formation. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 10, 2013
    Inventors: Eric Pierre de Rouffignac, Ilya Emil Berchenko, Thomas David Fowler, Robert Charles Ryan, Gordon Thomas Shahin, JR., George Leo Stegemeier, Harold J. Vinegar, Scott Lee Wellington, Etuan Zhang
  • Publication number: 20120305447
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal to produce a second hydrocarbon-containing product.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 6, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
  • Publication number: 20120305448
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a non-acidic metal-containing catalyst at a temperature of 375° C. to 500° C. to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. to produce a second hydrocarbon-containing product. The second hydrocarbon-containing product is separated into fractions, one of the fractions being a heavy hydrocarbon fraction comprised of hydrocarbons having a boiling point of at least 343° C. The heavy hydrocarbon fraction is then contacted with a fluidizable cracking catalyst at a temperature of at least 500° C.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 6, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Easwar Santhosh Ranganathan, Win Sim Chan
  • Patent number: 8318000
    Abstract: A method of producing a crude product from a hydrocarbon feed is provided. A hydrocarbon feed is contacted with a catalyst containing a Col. 6-10 metal or compound thereof to produce the crude product, where the catalyst has a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: November 27, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8268164
    Abstract: The present invention is directed to a crude product composition. The crude product has, per gram of crude product: at least 0.001 grams of naphtha, the naphtha having an octane number of at least 70, and the naphtha having at most 0.15 grams of olefins per gram of naphtha; at least 0.001 grams of kerosene, the kerosene having at least 0.2 grams of aromatics per gram of kerosene and a freezing point at a temperature of at most ?30° C.; and at most 0.05 grams of residue.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: September 18, 2012
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Patent number: 8241489
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of at least 0.00001 grams per gram of crude feed. The crude product is a liquid mixture at 25° C. and 0.101 MPa. Contacting conditions are controlled such that the liquid hourly space velocity in a contacting zone is over 10 h?1 and the crude product has a total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of at most 90% of the total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 14, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8225866
    Abstract: An oil shale formation may be treated using an in situ thermal process. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat input into the formation may be controlled to raise the temperature of portion at a selected rate during pyrolysis of hydrocarbons within the formation. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 24, 2012
    Assignee: Shell Oil Company
    Inventors: Eric Pierre de Rouffignac, Ilya Emil Berchenko, Thomas David Fowler, Robert Charles Ryan, Gordon Thomas Shahin, Jr., George Leo Stegemeier, Harold J. Vinegar, Scott Lee Wellington, Etuan Zhang
  • Publication number: 20120175285
    Abstract: Method of contacting a hydrocarbon feed with a catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 340 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ? or the catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Opinder Kishan BHAN, Scott Lee WELLINGTON
  • Publication number: 20120175286
    Abstract: A hydrocarbon composition is provided containing a total Ni/Fe/V content of at least 200 wtppm; a residue content of at least 0.2 grams per gram of hydrocarbon composition; a distillate content of at least 0.2 grams per gram of hydrocarbon composition; a sulfur content of at least 0.04 grams per gram of hydrocarbon composition; and a micro-carbon residue content of at least 0.06 grams per gram of hydrocarbon composition; and wherein the hydrocarbon composition has a viscosity of at most 100 cSt at 37.8° C.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Opinder Kishan BHAN, Scott Lee WELLINGTON
  • Publication number: 20120145596
    Abstract: A process is provided in which a first hydrocarbon-containing composition is provided where the first hydrocarbon-containing composition comprises hydrocarbons having a boiling range from 25° C. to 538° C. and from 0.1 wt. % to 5 wt. % sulfur, where at least 40 wt. % of the sulfur is contained in hydrocarbons having a boiling point of less than 343° C. where at least 40 wt. % of the sulfur contained in hydrocarbons having a boiling point less than 343° C. is contained in benzothiophenic compounds, and the first hydrocarbon-containing compound is hydrotreated to produce a second hydrocarbon-containing compound.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Stanley Nemec MILAM, Michael Anthony REYNOLDS, Scott Lee WELLINGTON, Frederik Arnold BUHRMAN
  • Publication number: 20120145593
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a metal-containing non-acidic catalyst at a temperature of 375° C. to 500° C. to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. to produce a second hydrocarbon-containing product.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Stanley Nemec MILAM, Michael Anthony REYNOLDS, Scott Lee WELLINGTON, Frederik Arnold BUHRMAN
  • Publication number: 20120145595
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide and a metal-containing catalyst at a temperature of 375° C. to 500° C. and a pressure of from 6.9 MPa to 27.5 MPa to produce a vapor comprising a first hydrocarbon-containing product, where the hydrogen sulfide is mixed with the feedstock, metal-containing catalyst, and hydrogen at a mole ratio of hydrogen sulfide to hydrogen of at least 1:10. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. and a pressure of from 3.4 MPa to 27.5 MPa to produce a second hydrocarbon-containing product.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Stanley Nemec MILAM, Michael Anthony REYNOLDS, Scott Lee WELLINGTON, Frederik Arnold BUHRMAN
  • Patent number: 8178468
    Abstract: A catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 315 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ?. The catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta. Methods of preparation of such catalyst are described herein. Methods of contacting a hydrocarbon feed with hydrogen in the presence of such catalyst to produce a crude product. Uses of crude products obtained. The crude product composition is also described herein.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 15, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington