Patents by Inventor Scott SKIRLO

Scott SKIRLO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914415
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: February 27, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Dirk Englund, Nicholas C. Harris
  • Publication number: 20230045938
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: May 4, 2022
    Publication date: February 16, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Jacques Johannes CAROLAN, Mihika PRABHU, Scott A. SKIRLO, Yichen Shen, Marin SOLJACIC, DIRK ENGLUND, Nicholas C. HARRIS
  • Patent number: 11334107
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: May 17, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Dirk Englund, Nicholas Christopher Harris
  • Publication number: 20220043323
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 10, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Scott A. SKIRLO, Cheryl Marie SORACE-AGASKAR, Marin SOLJACIC, Simon VERGHESE, Jeffrey S. HERD, Paul William JUODAWLKIS, Yi YANG, DIRK ENGLUND, Mihika PRABHU
  • Publication number: 20220012619
    Abstract: A photonic parallel network can be used to sample combinatorially hard distributions of Ising problems. The photonic parallel network, also called a photonic processor, finds the ground state of a general Ising problem and can probe critical behaviors of universality classes and their critical exponents. In addition to the attractive features of photonic networks—passivity, parallelization, high-speed and low-power—the photonic processor exploits dynamic noise that occurs during the detection process to find ground states more efficiently.
    Type: Application
    Filed: April 26, 2021
    Publication date: January 13, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Charles ROQUES-CARMES, Yichen Shen, Li JING, Tena DUBCEK, Scott A. SKIRLO, Hengameh BAGHERIANLEMRASKI, Marin SOLJACIC
  • Patent number: 11175562
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: November 16, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott A. Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Englund, Mihika Prabhu
  • Patent number: 11017309
    Abstract: A photonic parallel network can be used to sample combinatorially hard distributions of Ising problems. The photonic parallel network, also called a photonic processor, finds the ground state of a general Ising problem and can probe critical behaviors of universality classes and their critical exponents. In addition to the attractive features of photonic networks—passivity, parallelization, high-speed and low-power—the photonic processor exploits dynamic noise that occurs during the detection process to find ground states more efficiently.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: May 25, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Charles Roques-Carmes, Yichen Shen, Li Jing, Tena Dubcek, Scott A. Skirlo, Hengameh Bagherianlemraski, Marin Soljacic
  • Publication number: 20200379504
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: August 6, 2020
    Publication date: December 3, 2020
    Inventors: Jacques Johannes CAROLAN, Mihika PRABHU, Scott A. SKIRLO, Yichen Shen, Marin SOLJACIC, DIRK ENGLUND, Nicholas Christopher HARRIS
  • Publication number: 20200333683
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 22, 2020
    Inventors: Scott A. SKIRLO, Cheryl Marie SORACE-AGASKAR, Marin SOLJACIC, Simon VERGHESE, Jeffrey S. HERD, Paul William JUODAWLKIS, Yi YANG, DIRK ENGLUND, Mihika PRABHU
  • Patent number: 10768659
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 8, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Nicholas Christopher Harris, Dirk Englund
  • Patent number: 10649306
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 12, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott A. Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
  • Publication number: 20190294199
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: February 12, 2019
    Publication date: September 26, 2019
    Inventors: Jacques Johannes Carolan, Mihika Prabhu, Scott A. Skirlo, Yichen Shen, Marin Soljacic, Nicholas Christopher Harris, Dirk Englund
  • Publication number: 20190265574
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Inventors: Scott A. SKIRLO, Cheryl Marie SORACE-AGASKAR, Marin SOLJACIC, Simon VERGHESE, Jeffrey S. HERD, Paul William JUODAWLKIS, Yi YANG, Dirk Robert ENGLUND, Mihika PRABHU
  • Patent number: 10268232
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 23, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Nicholas Christopher Harris, Jacques Johannes Carolan, Mihika Prabhu, Dirk Robert Englund, Scott A. Skirlo, Yichen Shen, Marin Soljacic
  • Patent number: 10261389
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Scott Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
  • Publication number: 20190019100
    Abstract: A photonic parallel network can be used to sample combinatorially hard distributions of Ising problems. The photonic parallel network, also called a photonic processor, finds the ground state of a general Ising problem and can probe critical behaviors of universality classes and their critical exponents. In addition to the attractive features of photonic networks—passivity, parallelization, high-speed and low-power—the photonic processor exploits dynamic noise that occurs during the detection process to find ground states more efficiently.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 17, 2019
    Inventors: Charles ROQUES-CARMES, Yichen Shen, Li Jing, Tena Dubcek, Scott A. Skirlo, Hengameh Bagherianlemraski, Marin Soljacic
  • Publication number: 20180260703
    Abstract: A system for training a neural network model, the neural network model comprising a plurality of layers including a first hidden layer associated with a first set of weights, the system comprising at least one computer hardware processor programmed to perform: obtaining training data; selecting a unitary rotational representation for representing a matrix of the first set weights, the selected unitary rotational representation comprising a plurality of parameters; training the neural network model using the training data using an iterative neural network training algorithm to obtain a trained neural network model, each iteration of the iterative neural network training algorithm comprising: updating values of the plurality of parameters in the selected unitary rotational representation for representing the matrix of the set of weights for the at least one hidden layer, and saving the trained neural network model.
    Type: Application
    Filed: November 22, 2017
    Publication date: September 13, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Marin Soljacic, Yichen Shen, Li Jing, Tena Dubcek, Scott Skirlo, John E. Peurifoy, Max Erik Tegmark
  • Publication number: 20170371227
    Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 28, 2017
    Inventors: Scott SKIRLO, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
  • Publication number: 20170351293
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Jacques Johannes Carolan, Mihika PRABHU, Scott SKIRLO, Yichen SHEN, Marin SOLJACIC, Nicholas Christopher HARRIS, Dirk Robert ENGLUND