Patents by Inventor Scott William Jessen

Scott William Jessen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150170971
    Abstract: An integrated circuit containing core transistors and I/O transistors oriented perpendicular to the core transistors is formed by exposing a gate etch mask layer stack through a gate pattern photomask including core transistor gates and oversized I/O transistor gates. Core transistor gate lengths are defined by the gate pattern photomask. A first gate hardmask etch process removes the gate hardmask layer in exposed areas. The process continues with exposing a gate trim mask layer stack through a gate trim photomask. I/O gate lengths are defined by the gate trim photomask. A second gate hardmask etch process removes the gate hardmask layer in exposed areas. A gate etch operation removes polysilicon exposed by the gate hardmask layer to form gates for the core transistors and I/O transistors. The integrated circuit may also include I/O transistors oriented parallel to the core transistors, with gate lengths defined by the gate pattern photomask.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 18, 2015
    Inventors: Gregory Charles BALDWIN, Scott William JESSEN
  • Publication number: 20150170962
    Abstract: An integrated circuit containing elongated contacts, including elongated contacts which connect to at least three active areas and/or MOS gates, and including elongated contacts which connect to exactly two active areas and/or MOS gates and directly connect to a first level interconnect. A process of forming an integrated circuit containing elongated contacts, including elongated contacts which connect to at least three active areas and/or MOS gates, using exactly two contact photolithographic exposure operations, and including elongated contacts which connect to exactly two active areas and/or MOS gates and directly connect to a first level interconnect.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 18, 2015
    Inventors: James Walter BLATCHFORD, Scott William JESSEN
  • Publication number: 20150170975
    Abstract: A process of forming an integrated circuit containing elongated contacts which connect to three active areas and/or MOS gates, and elongated contacts which connect to two active areas and/or MOS gates and directly connect to a first level interconnect, using a litho-freeze-litho-etch process for a contact etch mask. A process of forming an integrated circuit containing elongated contacts which connect to three active areas and/or MOS gates, and elongated contacts which connect to two active areas and/or MOS gates and directly connect to a first level interconnect, using a litho-freeze-litho-etch process for a first level interconnect trench etch mask. A process of forming the integrated circuit using a litho-freeze-litho-etch process for a contact etch mask and a litho-freeze-litho-etch process for a first level interconnect trench etch mask.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 18, 2015
    Inventors: James Walter BLATCHFORD, Scott William JESSEN
  • Patent number: 9054214
    Abstract: An integrated circuit containing core transistors and I/O transistors oriented perpendicular to the core transistors is formed by exposing a gate etch mask layer stack through a gate pattern photomask including core transistor gates and oversized I/O transistor gates. Core transistor gate lengths are defined by the gate pattern photomask. A first gate hardmask etch process removes the gate hardmask layer in exposed areas. The process continues with exposing a gate trim mask layer stack through a gate trim photomask. I/O gate lengths are defined by the gate trim photomask. A second gate hardmask etch process removes the gate hardmask layer in exposed areas. A gate etch operation removes polysilicon exposed by the gate hardmask layer to form gates for the core transistors and I/O transistors. The integrated circuit may also include I/O transistors oriented parallel to the core transistors, with gate lengths defined by the gate pattern photomask.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: June 9, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Gregory Charles Baldwin, Scott William Jessen
  • Patent number: 9024450
    Abstract: An integrated circuit may be formed by forming a first interconnect pattern in a first plurality of parallel route tracks, and forming a second interconnect pattern in a second plurality of parallel route tracks, in which the second plurality of route tracks are alternated with the first plurality of route tracks. The first interconnect pattern includes a first lead pattern and the second interconnect pattern includes a second lead pattern, such that the route track containing the first lead pattern is immediately adjacent to the route track containing the second lead pattern. Metal interconnect lines are formed in the first interconnect pattern and the second interconnect pattern. A stretch crossconnect is formed in a vertical connecting level, such as a via or contact level, which electrically connects only the first lead and the second lead. The stretch crossconnect is formed concurrently with other vertical interconnect elements.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: May 5, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: James Walter Blatchford, Scott William Jessen
  • Publication number: 20140035160
    Abstract: An integrated circuit may be formed by forming a first interconnect pattern in a first plurality of parallel route tracks, and forming a second interconnect pattern in a second plurality of parallel route tracks, in which the second plurality of route tracks are alternated with the first plurality of route tracks. The first interconnect pattern includes a first lead pattern and the second interconnect pattern includes a second lead pattern, such that the route track containing the first lead pattern is immediately adjacent to the route track containing the second lead pattern. Metal interconnect lines are formed in the first interconnect pattern and the second interconnect pattern. A stretch crossconnect is formed in a vertical connecting level, such as a via or contact level, which electrically connects only the first lead and the second lead. The stretch crossconnect is formed concurrently with other vertical interconnect elements.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: James Walter BLATCHFORD, Scott William JESSEN
  • Patent number: 8580675
    Abstract: An integrated circuit may be formed by forming a first interconnect pattern in a first plurality of parallel route tracks, and forming a second interconnect pattern in a second plurality of parallel route tracks, in which the second plurality of route tracks are alternated with the first plurality of route tracks. The first interconnect pattern includes a first lead pattern and the second interconnect pattern includes a second lead pattern, such that the route track containing the first lead pattern is immediately adjacent to the route track containing the second lead pattern. Metal interconnect lines are formed in the first interconnect pattern and the second interconnect pattern. A stretch crossconnect is formed in a vertical connecting level, such as a via or contact level, which electrically connects only the first lead and the second lead. The stretch crossconnect is formed concurrently with other vertical interconnect elements.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: November 12, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: James Walter Blatchford, Scott William Jessen
  • Publication number: 20130045591
    Abstract: A method of semiconductor processing includes coating a top surface of a substrate having a semiconductor surface with a positive photoresist layer. The positive photoresist layer is exposed using a reticle or a mask that defines a pattern. The positive photoresist layer is doped by introducing at least one material modifying species after exposing. The positive photoresist layer is developed with a negative tone developer to form a patterned positive photoresist layer which provides masked portions of the top surface and unmasked portions of the top surface. A selective process is then performed to the unmasked portions of the top surface.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: JUDY BROWDER SHAW, SCOTT WILLIAM JESSEN
  • Publication number: 20120302059
    Abstract: A method of aligning a new pattern to more than one previously defined pattern during the manufacture of an integrated circuit. A method of aligning a photolighography pattern reticle to a first previously defined pattern in a first direction and also aligning the photolithography pattern reticle to a second previously defined pattern in a second direction. A method of aligning a photolighography pattern reticle to two previously defined patterns in the same direction.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 29, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Thomas John ATON, Steven Lee PRINS, Scott William JESSEN
  • Publication number: 20120223439
    Abstract: An integrated circuit may be formed by forming a first interconnect pattern in a first plurality of parallel route tracks, and forming a second interconnect pattern in a second plurality of parallel route tracks, in which the second plurality of route tracks are alternated with the first plurality of route tracks. The first interconnect pattern includes a first lead pattern and the second interconnect pattern includes a second lead pattern, such that the route track containing the first lead pattern is immediately adjacent to the route track containing the second lead pattern. Metal interconnect lines are formed in the first interconnect pattern and the second interconnect pattern. A stretch crossconnect is formed in a vertical connecting level, such as a via or contact level, which electrically connects only the first lead and the second lead. The stretch crossconnect is formed concurrently with other vertical interconnect elements.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 6, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Walter Blatchford, Scott William Jessen
  • Patent number: 7987436
    Abstract: A method of making a mask design having optical proximity correction features is provided. The method can include obtaining a target pattern comprising a plurality of target pattern features corresponding to a plurality of features to be imaged on a substrate. The method can also comprise generating a mask design comprising mask features corresponding to the plurality of features to be imaged on the substrate and controlling the aspect ratio of at least one of the features of the plurality of features to be imaged on the substrate by positioning a sub-resolution assist feature proximate to the corresponding mask feature.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: July 26, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Scott William Jessen, Mark Terry, Robert Soper
  • Patent number: 7745067
    Abstract: Provide is a method of making a mask layout, an integrated circuit device made by a method, a computer readable medium, and a mask for forming contact holes. The method can comprise patterning a first feature along a first axis, determining a first set of areas adjacent to the first feature, wherein each of the areas in the first set of areas is within a first angle away from the first axis, and wherein each of the areas in the first set of areas is within a first distance away from the first feature, and patterning a second feature in at least one of the first set of areas so as to form a mask layout, wherein each of the first feature and the second feature are one of a virtual feature and a real feature.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: June 29, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: James Walter Blatchford, Scott William Jessen
  • Publication number: 20090146259
    Abstract: A method of making a mask design having optical proximity correction features is provided. The method can include obtaining a target pattern comprising a plurality of target pattern features corresponding to a plurality of features to be imaged on a substrate. The method can also comprise generating a mask design comprising mask features corresponding to the plurality of features to be imaged on the substrate and controlling the aspect ratio of at least one of the features of the plurality of features to be imaged on the substrate by positioning a sub-resolution assist feature proximate to the corresponding mask feature.
    Type: Application
    Filed: February 17, 2009
    Publication date: June 11, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott William Jessen, Mark Terry, Robert Soper
  • Patent number: 7512928
    Abstract: A method of making a mask design having optical proximity correction features is provided. The method can include obtaining a target pattern comprising a plurality of target pattern features corresponding to a plurality of features to be imaged on a substrate. The method can also comprise generating a mask design comprising mask features corresponding to the plurality of features to be imaged on the substrate and controlling the aspect ratio of at least one of the features of the plurality of features to be imaged on the substrate by positioning a sub-resolution assist feature proximate to the corresponding mask feature.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: March 31, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Scott William Jessen, Mark Terry, Robert Soper