Patents by Inventor Se Baek Oh

Se Baek Oh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210041948
    Abstract: An eye tracking system for detecting position and movements of a user's eyes in a head-mounted display (HMD). The eye tracking system includes at least one eye tracking camera, an illumination source that emits infrared light towards the user's eyes, and diffraction gratings located at the eyepieces. The diffraction gratings redirect or reflect at least a portion of infrared light reflected off the user's eyes, while allowing visible light to pass. The cameras capture images of the user's eyes from the infrared light that is redirected or reflected by the diffraction gratings.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 11, 2021
    Applicant: Apple Inc.
    Inventors: Kathrin Berkner-Cieslicki, Se Baek Oh, Scott M. DeLapp, Christopher F. Griffo, Bradley C. Steele, Ting Sun, Kenichi Saito, Noah D. Bedard
  • Patent number: 10866426
    Abstract: An electronic device may have a light source such as a laser light source. The light source may emit light into a waveguide. A phase grating may diffract the light that is emitted into the waveguide to produce diffracted light. The diffracted light may be oriented parallel to a surface normal of an angled edge of the waveguide and parallel to a surface normal of a microelectromechanical systems mirror element in a two-dimensional scanning microelectromechanical systems mirror that is coupled to the edge of the waveguide. A wave plate may be interposed between the mirror and the edge of the waveguide to change the polarization state of light reflected from the mirror element relative to incoming diffracted light from the phase grating. The phase grating may be configured so that the reflected light is not diffracted by the phase grating.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Apple Inc.
    Inventors: Eric J. Hansotte, Byron R. Cocilovo, Se Baek Oh, Seyedeh Mahsa Kamali, Francesco Aieta
  • Publication number: 20200166756
    Abstract: An electronic device may have a display system that produces images. The display system may have one or more pixel arrays such as liquid-crystal-on-silicon pixel arrays. Images from the display system may be coupled into a waveguide by an input coupler and may be coupled out of the waveguide using an output coupler. The input and output couplers may be formed from volume phase holographic gratings. An additional grating may be used to shift light that would otherwise pass above or below the user's field of view towards the viewer. Holographic gratings in the waveguide may have fringes with constant pitch and variable period. The period at a given portion of the grating may be Bragg-matched to maximize diffraction efficiency for light of a given incident angle.
    Type: Application
    Filed: August 14, 2018
    Publication date: May 28, 2020
    Inventors: Scott M. DeLapp, Byron R. Cocilovo, Se Baek Oh, Bradley C. Steele
  • Publication number: 20200096771
    Abstract: An electronic device may include a display that produce images. The display may generate light for an optical system that redirects the light towards an eye box. The optical system may include a waveguide that propagates the light in a first direction towards the output coupler. The output coupler may couple the light out of the waveguide towards the eye box while inverting a parity of the light about the first direction. The coupler may include a first element such as a set of partial mirrors or diffractive gratings that redirects a first portion of the light in a second direction. The coupler may include a second element that redirects a second portion of the light in a third direction opposite the second direction. The first element may redirect the second portion and the second element may redirect the first portion towards the eye box.
    Type: Application
    Filed: August 13, 2019
    Publication date: March 26, 2020
    Inventors: Se Baek Oh, Bradley C. Steele, Byron R. Cocilovo, Francesco Aieta, Graham B. Myhre
  • Publication number: 20200089014
    Abstract: An electronic device may have a display that emits image light, a waveguide, and an input coupler that couples the image light into the waveguide. Beam splitter structures may be embedded within the waveguide. The beam splitter structures may partially reflect the image light multiple times and may serve to generate replicated beams of light that are coupled out of the waveguide by an output coupler. The beam splitter structures may replicate the beams across two dimensions to provide an eye box with uniform-intensity light from the display across its area. The beam splitter structures may include stacked partially reflective beam splitter layers, sandwiched transparent substrate layers having different indices of refraction, a thick volume hologram interposed between substrate layers, or combinations of these or other structures. The reflectivity of the beam splitter structures may vary discretely or continuously across the lateral area of the waveguide.
    Type: Application
    Filed: August 20, 2019
    Publication date: March 19, 2020
    Inventors: Guolin Peng, Eric J. Hansotte, Francesco Aieta, Graham B. Myhre, Hyungryul Choi, Nan Zhu, Paul J. Gelsinger-Austin, Se Baek Oh, Scott M. DeLapp, Bradley C. Steele
  • Publication number: 20200057308
    Abstract: An electronic device may have a reflective display with a pixel array that generates images. The reflective display may be illuminated by an illumination system. Light from the illumination system may be reflected by the pixel array as image light. The image light may be provided to a viewer using a waveguide with diffractive input and output couplers. The illumination system may have a waveguide. The illumination system may also have a light source such as one or more light-emitting diodes. Light from the light source may be coupled into the waveguide of the illumination system by a diffractive coupler such as volume hologram that serves as an input coupler. Light from the light source may be routed to the display to illuminate the display using the waveguide in the illumination system and a diffractive coupler such as a volume hologram that serves as an output coupler.
    Type: Application
    Filed: June 5, 2018
    Publication date: February 20, 2020
    Inventors: Hyungryul Choi, Eric J Hansotte, Guolin Peng, Paul J. Gelsinger-Austin, Se Baek Oh
  • Publication number: 20200049996
    Abstract: An electronic device may have a display that provides image light to a waveguide. First and second liquid crystal lenses may be mounted to opposing surfaces of the waveguide. An coupler may couple the image light out of the waveguide through the first lens. The second lens may convey world light to the first lens. Control circuitry may control the first lens to apply a first optical power to the image light and the world light and may control the second lens to apply a second optical power to the world light that cancels out the first optical power. Each lens may include two layers of liquid crystal molecules having antiparallel pretilt angles. The pretilt angles and rubbing directions of the first lens may be antiparallel to corresponding pretilt angles and rubbing directions of the second lens about the waveguide.
    Type: Application
    Filed: July 24, 2019
    Publication date: February 13, 2020
    Inventors: Jin Yan, Young Cheol Yang, Igor Stamenov, Scott M. DeLapp, Francesco Aieta, Bradley C. Steele, Enkhamgalan Dorjgotov, Se Baek Oh
  • Publication number: 20190377181
    Abstract: An electronic device may include a display system for presenting images close to a user's eyes. The display system may include a display unit that directs light and an optical system that redirects the light from the display unit towards a user's eyes. The optical system may include an input coupler and an output coupler formed on a waveguide. The input coupler may redirect light from the display unit so that it propagates in the waveguide towards the output coupler. The output coupler may redirect the light from the input coupler so that it exits the waveguide towards the user's eyes. A light-redirecting element may be used to redirect edge light that would otherwise be outside of the user's field of view towards the user's eyes.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 12, 2019
    Inventors: Graham B. Myhre, Eric J. Hansotte, Guolin Peng, Hyungryul Choi, Se Baek Oh, Paul Gelsinger-Austin
  • Publication number: 20190265486
    Abstract: An electronic device may have a light source such as a laser light source. The light source may emit light into a waveguide. A phase grating may diffract the light that is emitted into the waveguide to produce diffracted light. The diffracted light may be oriented parallel to a surface normal of an angled edge of the waveguide and parallel to a surface normal of a microelectromechanical systems mirror element in a two-dimensional scanning microelectromechanical systems mirror that is coupled to the edge of the waveguide. A wave plate may be interposed between the mirror and the edge of the waveguide to change the polarization state of light reflected from the mirror element relative to incoming diffracted light from the phase grating. The phase grating may be configured so that the reflected light is not diffracted by the phase grating.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 29, 2019
    Inventors: Eric J. Hansotte, Byron R. Cocilovo, Se Baek Oh, Seyedeh Mahsa Kamali, Francesco Aieta
  • Patent number: 9816940
    Abstract: Disclosed are methods and apparatus for detecting defects in a semiconductor sample. An inspection tool is used to collect intensity data sets at a plurality of focus settings from each of a plurality of xy positions of the sample. A polynomial equation having a plurality of coefficients is extracted for each of the xy position's collected intensity data sets as a function of focus setting. Each of the coefficients' set of values for the plurality of xy positions is represented with a corresponding coefficient image plane. A target set of coefficient image planes and a reference set of coefficient image planes are then analyzed to detect defects on the sample.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 14, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Grace H. Chen, Keith Buckley Wells, Markus B. Huber, Se Baek Oh
  • Patent number: 9684282
    Abstract: A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object. A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: June 20, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: George Barbastathis, Yuan Luo, Se Baek Oh
  • Publication number: 20160209334
    Abstract: Disclosed are methods and apparatus for detecting defects in a semiconductor sample. An inspection tool is used to collect intensity data sets at a plurality of focus settings from each of a plurality of xy positions of the sample. A polynomial equation having a plurality of coefficients is extracted for each of the xy position's collected intensity data sets as a function of focus setting. Each of the coefficients' set of values for the plurality of xy positions is represented with a corresponding coefficient image plane. A target set of coefficient image planes and a reference set of coefficient image planes are then analyzed to detect defects on the sample.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 21, 2016
    Applicant: KLA-Tencor Corporation
    Inventors: Grace H. Chen, Keith Buckley Wells, Markus B. Huber, Se Baek Oh
  • Patent number: 9360611
    Abstract: A volume holographic imaging system, apparatus and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-ftelecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: June 7, 2016
    Assignees: Massachusetts Institute of Technology, The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: George Barbastathis, Yuan Luo, Se Baek Oh, Jennifer K. Barton, Raymond K. Kostuk
  • Publication number: 20120327492
    Abstract: A volume holographic imaging system, apparatus and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
    Type: Application
    Filed: October 8, 2010
    Publication date: December 27, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: George Barbastathis, Yuan Luo, Se Baek Oh
  • Publication number: 20120327489
    Abstract: A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object. A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
    Type: Application
    Filed: October 8, 2010
    Publication date: December 27, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: George Barbastathis, Yuan Luo, Se Baek Oh
  • Patent number: 6727988
    Abstract: A spectrophotometer and spectrophotometry method, using a precision drive at a photodiode array which precisely moves the photodiode array by a distance equal to the physical interval between the photodiodes of the photodiode array so that the spectrophotometer and spectrophotometry method primarily measures light intensities of incident light by the photodiode array, and when precisely moves the photodiode array using the drive by the distance equal to the physical interval between photodiodes of the photodiode array, measures the light intensities of the incident light at desired positions corresponding to the intervals.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 27, 2004
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Soo Hyun Kim, Kyung Chan Kim, Se Baek Oh
  • Patent number: 6433857
    Abstract: Disclosed herewith is an optical triangulation displacement sensor using a diffraction grating. The optical triangulation displacement sensor includes a light source element, a condenser, a light-receiving element, an image formation lens, a transmission grating and a light-receiving element. The light source element generates light of certain intensity. The condenser receives the light from the light source element and transmits the light to the surface of measurement. The image formation lens receives the light reflected by the surface of measurement. The transmission grating converts the reflected light having passed through the image formation lens into a plurality of diffracted light rays. In the light-receiving element, an image is formed by the diffracted light rays incident from the transmission grating.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: August 13, 2002
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Soo Hyun Kim, Kyung Chan Kim, Se Baek Oh
  • Publication number: 20020101586
    Abstract: A spectrophotometer and spectrophotometry, using a precision drive means at the photodiode array, is disclosed. The drive means precisely moves the photodiode array by a distance equal to the physical interval between the photodiodes of the photodiode array. Therefore, the spectrophotometer and spectrophotometry of this invention primarily measures light intensities of incident light by the photodiode array, and precisely moves the photodiode array using the drive means by the distance equal to the physical interval between photodiodes of the photodiode array, and measures the light intensities of the incident light at desired positions corresponding to the intervals.
    Type: Application
    Filed: April 11, 2001
    Publication date: August 1, 2002
    Inventors: Soo Hyun Kim, Kyung Chan Kim, Se Baek Oh
  • Publication number: 20020060782
    Abstract: Disclosed herewith is an optical triangulation displacement sensor using a diffraction grating. The optical triangulation displacement sensor includes a light source element, a condenser, a light-receiving element, an image formation lens, a transmission grating and a light-receiving element. The light source element generates light of certain intensity. The condenser receives the light from the light source element and transmits the light to the surface of measurement. The image formation lens receives the light reflected by the surface of measurement. The transmission grating converts the reflected light having passed through the image formation lens into a plurality of diffracted light rays. In the light-receiving element, an image is formed by the diffracted light rays incident from the transmission grating.
    Type: Application
    Filed: April 19, 2001
    Publication date: May 23, 2002
    Inventors: Soo Hyun Kim, Kyung Chan Kim, Se Baek Oh