Patents by Inventor Sebastian KUPIJAI

Sebastian KUPIJAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10775561
    Abstract: An optoelectronic component includes a chip having a substrate and at least one optical waveguide integrated in the chip. The electro-optical component may be monolithically integrated in one or a plurality of semiconductor layers of the chip arranged on the substrate top side of the substrate, or on the substrate top side of the substrate. At least one electrical connection of the monolithically integrated electro-optical component is connected by means of a connection line to a conductor track connection situated below the substrate rear side. The connection line extends through a hole in the substrate from the electro-optical component to the conductor track connection situated below the substrate rear side.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: September 15, 2020
    Assignee: TECHNISCHE UNIVERSITÄT BERLIN
    Inventors: Stefan Meister, Hanjo Rhee, Christoph Theiss, Sebastian Kupijai
  • Publication number: 20190146151
    Abstract: The invention relates to an optoelectronic component (100) comprising a chip (110) comprising a substrate (12) and at least one optical waveguide (20) integrated in the chip (110). In one variant of the invention it is provided that an electro-optical component (30) is monolithically integrated in one or a plurality of semiconductor layers of the chip (110) arranged on the substrate top side (12a) of the substrate (12), or on the substrate top side (12a) of the substrate (12) and at least one electrical connection of the monolithically integrated electro-optical component (30) is connected by means of a connection line (41) to a conductor track connection (43) situated below the substrate rear side (12b), wherein the connection line (41) extends through a through hole (42) in the substrate (12) from the electro-optical component (30) to the conductor track connection (43) situated below the substrate rear side (12b).
    Type: Application
    Filed: September 28, 2015
    Publication date: May 16, 2019
    Applicant: TECHNISCHE UNIVERSITÄT BERLIN
    Inventors: Stefan MEISTER, Hanjo RHEE, Christoph THEISS, Sebastian KUPIJAI
  • Patent number: 9817295
    Abstract: An injection modulator for modulation of optical radiation, having an optical waveguide and a diode structure, having at least two p-doped semiconductor portions, at least two n-doped semiconductor portions and at least one lightly or undoped intermediate portion between the p-doped and n-doped portions. The p-doped portions when viewed in the longitudinal direction of the waveguide are offset with respect to the n-doped portions and the diode structure is arranged in a resonance-free portion of the waveguide. The p-doped portions lie on one side of the waveguide, the n-doped portions lie on the other side of the waveguide and the intermediate portion lies in the center, each portion extends transversely with respect to the waveguide longitudinal direction in the direction of the waveguide center of the waveguide and no p-doped portion when viewed in the longitudinal direction of the waveguide overlaps any n-doped portion.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: November 14, 2017
    Assignees: TECHNISCHE UNIVERSITAT BERLIN, SICOYA GMBH
    Inventors: Stefan Meister, Aws Al-Saadi, Sebastian Kupijai, Christoph Theiss, Hanjo Rhee, Lars Zimmermann, David Stolarek
  • Publication number: 20170299939
    Abstract: An injection modulator for modulation of optical radiation, having an optical waveguide and a diode structure, having at least two p-doped semiconductor portions, at least two n-doped semiconductor portions and at least one lightly or undoped intermediate portion between the p-doped and n-doped portions. The p-doped portions when viewed in the longitudinal direction of the waveguide are offset with respect to the n-doped portions and the diode structure is arranged in a resonance-free portion of the waveguide. The p-doped portions lie on one side of the waveguide, the n-doped portions lie on the other side of the waveguide and the intermediate portion lies in the center, each portion extends transversely with respect to the waveguide longitudinal direction in the direction of the waveguide center of the waveguide and no p-doped portion when viewed in the longitudinal direction of the waveguide overlaps any n-doped portion.
    Type: Application
    Filed: September 21, 2015
    Publication date: October 19, 2017
    Applicants: TECHNISCHE UNIVERSITAET BERLIN, SICOYA GMBH
    Inventors: Stefan MEISTER, Aws AL-SAADI, Sebastian KUPIJAI, Christoph THEISS, Hanjo RHEE, Lars ZIMMERMANN, David STOLAREK