Patents by Inventor Seiji Yaegashi
Seiji Yaegashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8969920Abstract: A vertical semiconductor device in which pinch-off characteristics and breakdown voltage characteristics can be stably improved by fixing the electric potential of a p-type GaN barrier layer with certainty is provided. The semiconductor device includes a GaN-based stacked layer having an opening, a regrown layer including a channel located so as to cover a wall surface of the opening, an n+-type source layer that is in ohmic contact with the source electrode, a p-type GaN barrier layer, and a p+-type GaN-based supplementary layer located between the p-type GaN barrier layer and the n+-type source layer. The p+-type GaN-based supplementary layer and the n+-type source layer form a tunnel junction to fix the electric potential of the p-type GaN barrier layer at a source potential.Type: GrantFiled: July 6, 2011Date of Patent: March 3, 2015Assignee: Sumitomo Electric Industries, Ltd.Inventors: Makoto Kiyama, Yu Saitoh, Masaya Okada, Masaki Ueno, Seiji Yaegashi, Kazutaka Inoue, Mitsunori Yokoyama
-
Patent number: 8941174Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. A GaN-based stacked layer 15 includes n?-type GaN drift layer 4/p-type GaN barrier layer 6/n+-type GaN contact layer 7. An opening 28 extends from a top layer and reaches the n?-type GaN drift layer 4. The semiconductor device includes a regrown layer 27 located so as to cover a wall surface and a bottom portion of the opening, the regrown layer 27 including an electron drift layer 22 and an electron source layer 26, a source electrode S located around the opening, a gate electrode G located on the regrown layer in the opening, and a bottom insulating layer 37 located in the bottom portion of the opening.Type: GrantFiled: October 17, 2011Date of Patent: January 27, 2015Assignee: Sumitomo Electric Industries, Ltd.Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
-
Patent number: 8896058Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. The vertical semiconductor device includes a GaN-based stacked layer 15 having an opening 28 and the GaN-based stacked layer 15 includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. The vertical semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, and a gate electrode G located on the regrown layer. The gate electrode G covers a portion having a length corresponding to the thickness of the p-type GaN-based barrier layer and is terminated at a position on the wall surface, the position being away from the bottom portion of the opening.Type: GrantFiled: October 5, 2011Date of Patent: November 25, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
-
Patent number: 8890239Abstract: In a vertical semiconductor device including a channel in an opening, a semiconductor device whose high-frequency characteristics can be improved and a method for producing the semiconductor device are provided. The semiconductor device includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. An opening 28 extends from a top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, a drain electrode D, and a gate electrode G located on the regrown layer. Assuming that the source electrode serving as one electrode and the drain electrode serving as the other electrode constitute a capacitor, the semiconductor device includes a capacitance-decreasing structure that decreases the capacitance of the capacitor.Type: GrantFiled: July 26, 2011Date of Patent: November 18, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Seiji Yaegashi, Makoto Kiyama, Mitsunori Yokoyama, Kazutaka Inoue, Masaya Okada, Yu Saitoh
-
Patent number: 8816398Abstract: There is provided a vertical GaN-based semiconductor device in which the on-resistance can be decreased while the breakdown voltage characteristics are improved using a p-type GaN barrier layer. The semiconductor device includes a regrown layer 27 including a channel located on a wall surface of an opening 28, a p-type barrier layer 6 whose end face is covered, a source layer 7 that is in contact with the p-type barrier layer, a gate electrode G located on the regrown layer, and a source electrode S located around the opening. In the semiconductor device, the source layer has a superlattice structure that is constituted by a stacked layer including a first layer (a layer) having a lattice constant smaller than that of the p-type barrier layer and a second layer (b layer) having a lattice constant larger than that of the first layer.Type: GrantFiled: July 6, 2011Date of Patent: August 26, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Makoto Kiyama, Yu Saitoh, Masaya Okada, Seiji Yaegashi, Kazutaka Inoue, Mitsunori Yokoyama
-
Patent number: 8748274Abstract: A method for fabricating a semiconductor device includes: forming a GaN-based semiconductor layer on a substrate; forming a gate insulating film of aluminum oxide on the GaN-based semiconductor layer at a temperature equal to or lower than 450° C.; forming a protection film on an upper surface of the gate insulating film; performing a process with an alkaline solution in a state in which the upper surface of the gate insulating film is covered with the protection film; and forming a gate electrode on the gate insulating film.Type: GrantFiled: December 17, 2009Date of Patent: June 10, 2014Assignee: Sumitomo Electric Device Innovations, Inc.Inventors: Ken Nakata, Seiji Yaegashi
-
Publication number: 20130313564Abstract: There are provided a semiconductor device that includes a bypass protection unit against surge voltage or the like, achieves good withstand voltage characteristics and low on-resistance (low On-state voltage), has a simple structure, and is used for large-current purpose and a method for producing the semiconductor device. In the present invention, the semiconductor device includes an n+-type GaN substrate 1 having a GaN layer that is in ohmic contact with a supporting substrate, a FET having an n?-type GaN drift layer 2 in a first region R1, and an SBD having an anode electrode in a second region R2, the anode electrode being in Schottky contact with the n?-type GaN drift layer 2. The FET and the SBD are arranged in parallel. A drain electrode D of the FET and a cathode electrode C of the SBD are formed on the back of the n+-type GaN substrate 1.Type: ApplicationFiled: July 30, 2013Publication date: November 28, 2013Applicants: Sumitomo Electric Device Innovations, Inc., Sumitomo Electric Industries, Ltd.Inventors: Masaya OKADA, Makato KIYAMA, Seiji YAEGASHI, Ken NAKATA
-
Publication number: 20130248876Abstract: In a vertical semiconductor device including a channel in an opening, a semiconductor device whose high-frequency characteristics can be improved and a method for producing the semiconductor device are provided. The semiconductor device includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. An opening 28 extends from a top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, a drain electrode D, and a gate electrode G located on the regrown layer. Assuming that the source electrode serving as one electrode and the drain electrode serving as the other electrode constitute a capacitor, the semiconductor device includes a capacitance-decreasing structure that decreases the capacitance of the capacitor.Type: ApplicationFiled: July 26, 2011Publication date: September 26, 2013Applicant: Sumitomo Electric Industries, Ltd.Inventors: Seiji Yaegashi, Makoto Kiyama, Mitsunori Yokoyama, Kazutaka Inoue, Masaya Okada, Yu Saitoh
-
Publication number: 20130240900Abstract: There is provided a semiconductor device or the like which includes a channel and a gate electrode in an opening and in which electric field concentration near a bottom portion of the opening can be reduced. The semiconductor device includes n?-type GaN drift layer 4/p-type GaN barrier layer 6/n+-type GaN contact layer. An opening 28 extends from the top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located in the opening, the regrown layer 27 including an electron supply layer 26 and an electron drift layer 22, a source electrode S, a drain electrode D, a gate electrode G located on the regrown layer, and a semiconductor impurity adjustment region 31 disposed in the bottom portion of the opening. The impurity adjustment region 31 is a region that promotes a potential drop from the drain electrode side to the gate electrode side in a potential distribution in an off-state.Type: ApplicationFiled: October 17, 2011Publication date: September 19, 2013Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Seiji Yaegashi, Makoto Kiyama, Kazutaka Inoue, Mitsunori Yokoyama, Yu Saitoh, Masaya Okada
-
Publication number: 20130234156Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. A GaN-based stacked layer 15 includes n?-type GaN drift layer 4/p-type GaN barrier layer 6/n+-type GaN contact layer 7. An opening 28 extends from a top layer and reaches the n?-type GaN drift layer 4. The semiconductor device includes a regrown layer 27 located so as to cover a wall surface and a bottom portion of the opening, the regrown layer 27 including an electron drift layer 22 and an electron source layer 26, a source electrode S located around the opening, a gate electrode G located on the regrown layer in the opening, and a bottom insulating layer 37 located in the bottom portion of the opening.Type: ApplicationFiled: October 17, 2011Publication date: September 12, 2013Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTDInventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
-
Patent number: 8525184Abstract: There are provided a semiconductor device that includes a bypass protection unit against surge voltage or the like, achieves good withstand voltage characteristics and low on-resistance (low On-state voltage), has a simple structure, and is used for large-current purpose and a method for producing the semiconductor device. In the present invention, the semiconductor device includes an n+-type GaN substrate 1 having a GaN layer that is in ohmic contact with a supporting substrate, a FET having an n?-type GaN drift layer 2 in a first region R1, and an SBD having an anode electrode in a second region R2, the anode electrode being in Schottky contact with the d?-type GaN drift layer 2. The FET and the SBD are arranged in parallel. A drain electrode D of the FET and a cathode electrode C of the SBD are formed on the back of the n+-type GaN substrate 1.Type: GrantFiled: June 22, 2012Date of Patent: September 3, 2013Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Device Innovations, Inc.Inventors: Masaya Okada, Makato Kiyama, Seiji Yaegashi, Ken Nakata
-
Publication number: 20130221434Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. The vertical semiconductor device includes a GaN-based stacked layer 15 having an opening 28 and the GaN-based stacked layer 15 includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. The vertical semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, and a gate electrode G located on the regrown layer. The gate electrode G covers a portion having a length corresponding to the thickness of the p-type GaN-based barrier layer and is terminated at a position on the wall surface, the position being away from the bottom portion of the opening.Type: ApplicationFiled: October 5, 2011Publication date: August 29, 2013Applicant: Sumitomo Electric Industries, Ltd.Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
-
Publication number: 20130181255Abstract: There is provided a vertical GaN-based semiconductor device in which the on-resistance can be decreased while the breakdown voltage characteristics are improved using a p-type GaN barrier layer. The semiconductor device includes a regrown layer 27 including a channel located on a wall surface of an opening 28, a p-type barrier layer 6 whose end face is covered, a source layer 7 that is in contact with the p-type barrier layer, a gate electrode G located on the regrown layer, and a source electrode S located around the opening. In the semiconductor device, the source layer has a superlattice structure that is constituted by a stacked layer including a first layer (a layer) having a lattice constant smaller than that of the p-type barrier layer and a second layer (b layer) having a lattice constant larger than that of the first layer.Type: ApplicationFiled: July 6, 2011Publication date: July 18, 2013Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Makoto Kiyama, Yu Saitoh, Masaya Okada, Seiji Yaegashi, Kazutaka Inoue, Mitsunori Yokoyama
-
Publication number: 20130168739Abstract: A vertical semiconductor device in which pinch-off characteristics and breakdown voltage characteristics can be stably improved by fixing the electric potential of a p-type GaN barrier layer with certainty is provided. The semiconductor device includes a GaN-based stacked layer having an opening, a regrown layer including a channel located so as to cover a wall surface of the opening, an n+-type source layer that is in ohmic contact with the source electrode, a p-type GaN barrier layer, and a p+-type GaN-based supplementary layer located between the p-type GaN barrier layer and the n+-type source layer. The p+-type GaN-based supplementary layer and the n+-type source layer form a tunnel junction to fix the electric potential of the p-type GaN barrier layer at a source potential.Type: ApplicationFiled: July 6, 2011Publication date: July 4, 2013Applicant: Sumitomo Electric Industries, Ltd.Inventors: Makoto Kiyama, Yu Saitoh, Masaya Okada, Masaki Ueno, Seiji Yaegashi, Kazutaka Inoue, Mitsunori Yokoyama
-
Publication number: 20120273797Abstract: There are provided a semiconductor device that includes a bypass protection unit against surge voltage or the like, achieves good withstand voltage characteristics and low on-resistance (low On-state voltage), has a simple structure, and is used for large-current purpose and a method for producing the semiconductor device. In the present invention, the semiconductor device includes an n+-type GaN substrate 1 having a GaN layer that is in ohmic contact with a supporting substrate, a FET having an n?-type GaN drift layer 2 in a first region R1, and an SBD having an anode electrode in a second region R2, the anode electrode being in Schottky contact with the d?-type GaN drift layer 2. The FET and the SBD are arranged in parallel. A drain electrode D of the FET and a cathode electrode C of the SBD are formed on the back of the n+-type GaN substrate 1.Type: ApplicationFiled: June 22, 2012Publication date: November 1, 2012Applicants: Sumitomo Electric Device Innovations, Inc., Sumitomo Electric Industries, Ltd.Inventors: Masaya Okada, Makoto Kiyama, Seiji Yaegashi, Ken Nakata
-
Patent number: 8227810Abstract: There are provided a semiconductor device that includes a bypass protection unit against surge voltage or the like, achieves good withstand voltage characteristics and low on-resistance (low On-state voltage), has a simple structure, and is used for large-current purpose and a method for producing the semiconductor device. In the present invention, the semiconductor device includes an n+-type GaN substrate 1 having a GaN layer that is in ohmic contact with a supporting substrate, a FET having an n?-type GaN drift layer 2 in a first region R1, and an SBD having an anode electrode in a second region R2, the anode electrode being in Schottky contact with the n?-type GaN drift layer 2. The FET and the SBD are arranged in parallel. A drain electrode D of the FET and a cathode electrode C of the SBD are formed on the back of the n+-type GaN substrate 1.Type: GrantFiled: July 9, 2010Date of Patent: July 24, 2012Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Devices Innovations, Inc.Inventors: Masaya Okada, Makoto Kiyama, Seiji Yaegashi, Ken Nakata
-
Patent number: 8044433Abstract: A semiconductor device includes a substrate, a GaN-based semiconductor layer formed on the substrate, a gate electrode embedded in the GaN-based semiconductor layer, a source electrode and a drain electrode formed on both sides of the gate electrode, a first recess portion formed between the gate electrode and the source electrode, and a second recess portion formed between the gate electrode and the drain electrode. The first recess portion has a depth deeper than that of the second recess portion.Type: GrantFiled: March 30, 2006Date of Patent: October 25, 2011Assignee: Eudyna Devices Inc.Inventors: Takeshi Kawasaki, Ken Nakata, Seiji Yaegashi
-
Publication number: 20110204381Abstract: There are provided a semiconductor device that includes a bypass protection unit against surge voltage or the like, achieves good withstand voltage characteristics and low on-resistance (low On-state voltage), has a simple structure, and is used for large-current purpose and a method for producing the semiconductor device. In the present invention, the semiconductor device includes an n+-type GaN substrate 1 having a GaN layer that is in ohmic contact with a supporting substrate, a FET having an n?-type GaN drift layer 2 in a first region R1, and an SBD having an anode electrode in a second region R2, the anode electrode being in Schottky contact with the n?-type GaN drift layer 2. The FET and the SBD are arranged in parallel. A drain electrode D of the FET and a cathode electrode C of the SBD are formed on the back of the n+-type GaN substrate 1.Type: ApplicationFiled: July 9, 2010Publication date: August 25, 2011Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.Inventors: Masaya Okada, Makoto Kiyama, Seiji Yaegashi, Ken Nakata
-
Publication number: 20110193095Abstract: A semiconductor device includes a GaN-based semiconductor layer formed on a substrate, a gate insulating film that is formed on a surface of the GaN-based semiconductor layer and is made of aluminum oxide, and a gate electrode formed on the gate insulating film, the gate insulating film having a carbon concentration of 2×1020/cm3 or less.Type: ApplicationFiled: April 15, 2011Publication date: August 11, 2011Applicant: SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.Inventors: Ken Nakata, Seiji Yaegashi
-
Publication number: 20100159656Abstract: A method for fabricating a semiconductor device includes: forming a GaN-based semiconductor layer on a substrate; forming a gate insulating film of aluminum oxide on the GaN-based semiconductor layer at a temperature equal to or lower than 450° C.; forming a protection film on an upper surface of the gate insulating film; performing a process with an alkaline solution in a state in which the upper surface of the gate insulating film is covered with the protection film; and forming a gate electrode on the gate insulating film.Type: ApplicationFiled: December 17, 2009Publication date: June 24, 2010Applicant: SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.Inventors: Ken Nakata, Seiji Yaegashi