Patents by Inventor Seikoh Yoshida

Seikoh Yoshida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9048302
    Abstract: A field effect transistor has an MOS structure and is formed of a nitride based compound semiconductor. The field effect transistor includes a substrate; a semiconductor operating layer having a recess and formed on the substrate; an insulating layer formed on the semiconductor operating layer including the recess; a gate electrode formed on the insulating layer at the recess; and a source electrode and a drain electrode formed on the semiconductor operating layer with the recess in between and electrically connected to the semiconductor operating layer. The recess includes a side wall inclined relative to the semiconductor operating layer.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 2, 2015
    Assignee: THE FURUKAWA ELECTRIC CO., LTD
    Inventors: Yoshihiro Sato, Hiroshi Kambayashi, Yuki Niiyama, Takehiko Nomura, Seikoh Yoshida, Masayuki Iwami, Jiang Li
  • Patent number: 8729603
    Abstract: A GaN-based semiconductor element includes a substrate, a buffer layer formed on the substrate, including an electrically conductive portion, an epitaxial layer formed on the buffer layer, and a metal structure in ohmic contact with the electrically conductive portion of the buffer layer for controlling an electric potential of the buffer layer.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 20, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Seikoh Yoshida
  • Patent number: 8525225
    Abstract: A semiconductor device includes a plurality of electrodes arranged on a compound semiconductor layer grown on a substrate, and a surface protection film that protects a surface of a semiconductor layer on the compound semiconductor layer between the electrodes. A refractive index of the surface protection film is controlled so that a stress caused by the surface protection film on the surface of the semiconductor layer is minimized.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: September 3, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kambayashi, Nariaki Ikeda, Seikoh Yoshida
  • Patent number: 8421182
    Abstract: A semiconductor layer of a second conductive type is formed on a RESURF layer of a first conductive type that is formed on a buffer layer. A contact layer of the first conductive type is formed in or on the semiconductor layer. A source electrode is formed on the contact layer. A drain electrode is formed on the RESURF layer. A gate insulating film is formed on the semiconductor layer to overlap with an end of the semiconductor layer. A gate electrode is formed on the gate insulating film to overlap with the end of the semiconductor layer. A channel formed near the end of the semiconductor layer is electrically connected to the RESURF layer.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: April 16, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Takehiko Nomura, Seikoh Yoshida, Sadahiro Kato
  • Patent number: 8350293
    Abstract: A p-type nitride compound semiconductor layer is formed on a buffer formed on a substrate. An n-type contact region is formed by ion implantation under a source electrode and a drain electrode. An electric-field reducing layer made of an n-type nitride compound semiconductor is formed on the p-type nitride compound semiconductor layer. A carrier density of the electric-field reducing layer is lower than that of the n-type contact region. A first end portion of the electric-field reducing layer contacts with the n-type contact region, and a second end portion of the electric-field reducing layer overlaps with a gate electrode.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: January 8, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Tat-Sing Paul Chow, Takehiko Nomura, Yuki Niiyama, Hiroshi Kambayashi, Seikoh Yoshida
  • Patent number: 8304809
    Abstract: In a GaN-based semiconductor device, an active layer of a GaN-based semiconductor is formed on a silicon substrate. A trench is formed in the active layer and extends from a top surface of the active layer to a depth reaching the silicon substrate. A first electrode is formed on an internal wall surface of the trench and extends from the top surface of the active layer to the silicon substrate. A second electrode is formed on the active layer to define a current path between the first electrode and the second electrode via the active layer in an on-state of the device. A bottom electrode is formed on a bottom surface of the silicon substrate and defines a bonding pad for the first electrode. The first electrode is formed of metal in direct ohmic contact with both the silicon substrate and the active layer.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: November 6, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Shusuke Kaya, Seikoh Yoshida, Masatoshi Ikeda, legal representative, Sadahiro Kato, Takehiko Nomura, Nariaki Ikeda, Masayuki Iwami, Yoshihiro Sato, Hiroshi Kambayashi, Koh Li
  • Publication number: 20120193639
    Abstract: A GaN-based semiconductor element includes a substrate, a buffer layer formed on the substrate, including an electrically conductive portion, an epitaxial layer formed on the buffer layer, and a metal structure in ohmic contact with the electrically conductive portion of the buffer layer for controlling an electric potential of the buffer layer.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Nariaki IKEDA, Seikoh YOSHIDA
  • Patent number: 8183597
    Abstract: A GaN semiconductor device which has a low on-resistance, has a very small leak current when a reverse bias voltage is applied and is very excellent in withstand voltage characteristic, said GaN semiconductor device having a structure being provided with a III-V nitride semiconductor layer containing at least one hetero junction structure of III-V nitride semiconductors having different band gap energies; a first anode electrode arranged on a surface of said III-V nitride semiconductor by Schottky junction; a second anode electrode which is arranged on the surface of said III-V nitride semiconductor layer by Schottky junction, is electrically connected with said first anode electrode and forms a higher Schottky barrier than a Schottky barrier formed by said first anode electrode; and an insulating protection film which is brought into contact with said second anode electrode and is arranged on the surface of said III-V nitride semiconductor layer.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: May 22, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Jiang Li, Seikoh Yoshida
  • Patent number: 8178898
    Abstract: A GaN-based semiconductor element includes a substrate, a buffer layer formed on the substrate, including an electrically conductive portion, an epitaxial layer formed on the buffer layer, and a metal structure in ohmic contact with the electrically conductive portion of the buffer layer for controlling an electric potential of the buffer layer.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 15, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Seikoh Yoshida, Masatoshi Ikeda, legal representative
  • Patent number: 8134181
    Abstract: A semiconductor device includes a substrate; a buffer layer; and a compound semiconductor layer laminated on the substrate with the buffer layer in between. The buffer layer has a dislocation density in a plane in parallel to an in-plane direction thereof, so that a volume resistivity of the buffer layer becomes a substantially maximum value.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 13, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshihiro Sato, Sadahiro Kato, Seikoh Yoshida
  • Patent number: 8093626
    Abstract: Provided is a normally-off field effect transistor using a III-nitride semiconductor. The transistor is provided with a III-nitride semiconductor layer grown on a substrate by including an acceptor and a donor; a gate insulating film which is formed on the III-nitride semiconductor layer to have a thickness to be at a prescribed threshold voltage based on the concentration of the acceptor and that of the donor; a gate electrode formed on the gate insulating film; a first source/drain electrode formed on the III-nitride semiconductor layer to one side of and separate from the gate electrode, directly or via a high dopant concentration region; and a second source/drain electrode formed away from the gate electrode and the first source/drain electrode, on or under the III-nitride semiconductor layer, directly or via a high dopant concentration region.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: January 10, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuki Niiyama, Shinya Ootomo, Tatsuyuki Shinagawa, Takehiko Nomura, Seikoh Yoshida, Hiroshi Kambayashi
  • Patent number: 8072002
    Abstract: A field effect transistor formed of a semiconductor of a III group nitride compound, includes an electron running layer formed on a substrate and formed of GaN; an electron supplying layer formed on the electron running layer and formed of AlxGa1-xN (0.01?x?0.4), the electron supplying layer having a band gap energy different from that of the electron running layer and being separated with a recess region having a depth reaching the electron running layer; a source electrode and a drain electrode formed on the electron supplying layer with the recess region in between; a gate insulating film layer formed on the electron supplying layer for covering a surface of the electron running layer in the recess region; and a gate electrode formed on the gate insulating film layer in the recess region. The electron supplying layer has a layer thickness between 5.5 nm and 40 nm.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 6, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuki Niyama, Seikoh Yoshida, Hiroshi Kambayashi, Takehiko Nomura, Masayuki Iwami, Shinya Ootomo
  • Patent number: 7998848
    Abstract: The laser beam with a wavelength having a higher energy than the band gap energy of the material forming the carrier moving layer is irradiated to activate the impurities contained in the constituent layer of the field effect transistor in the method of producing the field effect transistor. The method of the invention does not apply the heating of the substrate or the sample stage to raise the temperature of the semiconductor layer using the thermal conductivity so as to activate the impurities. Thus, the implanted impurities can be activated without deteriorating the performance of the device and reliability.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: August 16, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuki Niiyama, Seikoh Yoshida, Masatoshi Ikeda, legal representative, Hiroshi Kambayashi, Takehiko Nomura
  • Patent number: 7855155
    Abstract: An optical absorption layer comprised of a substance having a band gap energy smaller than that of GaN is formed on an implanted region formed in a pGaN layer as a ground layer. There is performed an annealing step from an upper surface of a substrate with predetermined light such as infrared light, a red light, or the like, which has energy smaller than the band gap energy of the pGaN layer. The optical absorption layer has an absorption coefficient of the light in the annealing step larger than that of the pGaN layer. Accordingly, it is possible to selectively perform a heat treatment on a region directly under the optical absorption layer or a region in a vicinity thereof (the implanted region).
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 21, 2010
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuki Niiyama, Hiroshi Kambayashi, Takehiko Nomura, Seikoh Yoshida, Masatoshi Ikeda, legal representative
  • Publication number: 20100283083
    Abstract: Provided is a normally-off field effect transistor using a III-nitride semiconductor. The transistor is provided with a III-nitride semiconductor layer grown on a substrate by including an acceptor and a donor; a gate insulating film which is formed on the III-nitride semiconductor layer to have a thickness to be at a prescribed threshold voltage based on the concentration of the acceptor and that of the donor; a gate electrode formed on the gate insulating film; a first source/drain electrode formed on the III-nitride semiconductor layer to one side of and separate from the gate electrode, directly or via a high dopant concentration region; and a second source/drain electrode formed away from the gate electrode and the first source/drain electrode, on or under the III-nitride semiconductor layer, directly or via a high dopant concentration region.
    Type: Application
    Filed: June 14, 2007
    Publication date: November 11, 2010
    Inventors: Yuki Niiyama, Shinya Ootomo, Tatsuyuki Shinagawa, Takehiko Nomura, Seikoh Yoshida, Hiroshi Kambayashi
  • Patent number: 7821035
    Abstract: A second semiconductor layer of a second nitride-based compound semiconductor with a wider bandgap formed on a first semiconductor layer of a first nitride-based compound semiconductor with a smaller bandgap includes an opening, on which a gate insulating layer is formed at a portion exposed through the opening. A first source electrode and a first drain electrode formed across a first gate electrode make an ohmic contact to the second semiconductor layer. A second source electrode and a second drain electrode formed across a second gate electrode that makes a Schottky contact to the second semiconductor layer make an ohmic contact to the second semiconductor layer.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 26, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Takehiko Nomura, Hiroshi Kambayashi, Yuki Niiyama, Seikoh Yoshida
  • Patent number: 7812371
    Abstract: The field effect transistor includes a laminated structure in which a buffer layer, and an electron transporting layer (undoped GaN layer), and an electron supplying layer (undoped AlGaN layer) are laminated in sequence on a sapphire substrate. An npn laminated structure is formed on a source region of the electron supplying layer, and a source electrode is formed on the npn laminated structure. A drain electrode is formed in a drain region of the electron supplying layer, and an insulating film is formed in an opening region formed in the gate region. When a forward voltage greater than a threshold is applied to the gate electrode, an inversion layer is formed and the drain current flows. By changing a thickness and an impurity concentration of the p-type GaN layer, the threshold voltage can be controlled. The electrical field concentration between the gate electrode and the drain electrode is relaxed due to the drift layer, and voltage resistance improves.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 12, 2010
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Shusuke Kaya, Seikoh Yoshida, Masatoshi Ikeda, legal representative, Sadahiro Kato, Takehiko Nomura, Nariaki Ikeda, Masayuki Iwami, Yoshihiro Sato, Hiroshi Kambayashi, Yuki Niiyama
  • Publication number: 20100219451
    Abstract: A p-type nitride compound semiconductor layer is formed on a buffer formed on a substrate. An n-type contact region is formed by ion implantation under a source electrode and a drain electrode. An electric-field reducing layer made of an n-type nitride compound semiconductor is formed on the p-type nitride compound semiconductor layer. A career density of the electric-field reducing layer is lower than that of the n-type contact region. A first end portion of the electric-field reducing layer contacts with the n-type contact region, and a second end portion of the electric-field reducing layer overlaps with a gate electrode.
    Type: Application
    Filed: December 29, 2009
    Publication date: September 2, 2010
    Inventors: Tat-Sing Paul Chow, Takehiko Nomura, Yuki Niiyama, Hiroshi Kambayashi, Seikoh Yoshida
  • Publication number: 20100219455
    Abstract: An active layer of a first conductive-type includes a channel area. A first contact area and a second contact area of a second conductive-type are formed at positions across the channel area. A source electrode is formed on the first contact area. A drain electrode is formed on the second contact area. A gate electrode is formed above the channel area via a gate insulating layer. A reduced surface field zone of the second conductive-type is formed in the channel area at a position close to the second contact area. Thickness of the reduced surface field zone is 30 nanometers to 100 nanometers.
    Type: Application
    Filed: February 4, 2010
    Publication date: September 2, 2010
    Inventors: Yuki Niiyama, Seikoh Yoshida, Takehiko Nomura, Hiroshi Kambayashi
  • Publication number: 20100127307
    Abstract: A semiconductor layer of a second conductive type is formed on a RESURF layer of a first conductive type that is formed on a buffer layer. A contact layer of the first conductive type is formed in or on the semiconductor layer. A source electrode is formed on the contact layer. A drain electrode is formed on the RESURF layer. A gate insulating film is formed on the semiconductor layer to overlap with an end of the semiconductor layer. A gate electrode is formed on the gate insulating film to overlap with the end of the semiconductor layer. A channel formed near the end of the semiconductor layer is electrically connected to the RESURF layer.
    Type: Application
    Filed: December 16, 2009
    Publication date: May 27, 2010
    Inventors: Takehiko Nomura, Seikoh Yoshida, Sadahiro Kato