Patents by Inventor Selena Chan

Selena Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9040237
    Abstract: Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction cavities containing sensors to monitor changes in solutions contained in the reaction cavities. Additional embodiments provide devices and methods for sequencing DNA using arrays of reaction cavities that allow for optical monitoring of solutions in the reaction cavities. Test and fill reaction schemes are disclosed that allow DNA to be sequenced. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: May 26, 2015
    Assignee: INTEL CORPORATION
    Inventors: Tae-Woong Koo, Selena Chan, Xing Su, Zhang Jingwu, Mineo Yamakawa, Val M. Dubin
  • Patent number: 8934683
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 13, 2015
    Assignee: Intel Corporation
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 8709355
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: April 29, 2014
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20130243656
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210, Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution, 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Application
    Filed: December 28, 2012
    Publication date: September 19, 2013
    Inventors: Selena CHAN, Sunghoon Kwon, Narayan Sundararajan
  • Patent number: 8465698
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: June 18, 2013
    Assignee: Intel Corporation
    Inventors: Mineo Yamakawa, John Heck, Selena Chan, Narayan Sundararajan
  • Patent number: 8367017
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20120141329
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Application
    Filed: October 13, 2011
    Publication date: June 7, 2012
    Inventors: Mineo YAMAKAWA, John HECK, Selena CHAN, Narayan SUNDARARAJAN
  • Patent number: 8153079
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 10, 2012
    Assignee: Intel Corporation
    Inventors: Mineo Yamakawa, John Heck, Selena Chan, Narayan Sundararajan
  • Patent number: 7843562
    Abstract: The invention provides methods used to analyze the contents of a biological sample, such as blood serum, with cascade Raman sensing. A fluorescence producing nanoporous biosensor having probes that bind specifically to known analytes is contacted with a biological sample and one or more bound complexes coupled to the porous semiconductor structure are formed. The bound complexes are contacted with a Raman-active probe that binds specifically to the bound complexes and the biosensor is illuminated to generate fluorescent emissions from the biosensor. These fluorescent emissions generate Raman signals from the bound complexes. The Raman signals produced by the bound complexes are detected and the Raman signal associated with a bound protein-containing analyte is indicative of the presence of the protein-containing compound in the sample. The invention methods are useful to provide a protein profile of a patient sample. The invention also provides detection systems useful to practice the invention methods.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 30, 2010
    Assignee: Intel Corporation
    Inventors: Selena Chan, Tae-Woong Koo
  • Publication number: 20100267013
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, nucleotides are covalently attached to Raman labels before incorporation into a nucleic acid. In other embodiments, unlabeled nucleic acids are used. Exonuclease treatment of the nucleic acid results in the release of labeled or unlabeled nucleotides that are detected by Raman spectroscopy. In alternative embodiments of the invention, nucleotides released from a nucleic acid by exonuclease treatment are covalently cross-linked to nanoparticles and detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Other embodiments of the invention concern apparatus for nucleic acid sequencing.
    Type: Application
    Filed: May 24, 2007
    Publication date: October 21, 2010
    Applicant: INTEL CORPORATION
    Inventors: Xing Su, Andrew Arthur Berlin, Selena Chan, Steven J. Kirch, Tae-Woong Koo, Gabi Neubauer, Valluri Rao, Narayan Sundararajan, Mineo Yamakawa
  • Patent number: 7776547
    Abstract: Methods and apparatus are provided for assaying cell samples, which may be living cells, using probes labeled with composite organic-inorganic nanoparticles (COINs) and microspheres with COINs embedded within a polymer matrix to which the probe moiety is attached. COINs intrinsically produce SERS signals upon laser irradiation, making COIN-labeled probes particularly suitable in a variety of methods for assaying cells, including biological molecules that may be contained on or within cells, most of which are not inherently Raman-active. The invention provides variations of the sandwich immunoassay employing both specific and degenerate binding, methods for reverse phase assay of tissue samples and cell microstructures, in solution displacement and competition assays, and the like. Systems and chips useful for practicing the invention assays are also provided.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: August 17, 2010
    Assignee: Intel Corporation
    Inventors: Mark Roth, Andrew Berlin, Selena Chan, Tae-Woong Koo, Xing Su, Lei Sun
  • Patent number: 7771661
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: August 10, 2010
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20100171950
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Application
    Filed: October 7, 2009
    Publication date: July 8, 2010
    Applicant: Intel Corporation
    Inventors: Selena CHAN, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20100151454
    Abstract: Disclosed herein are methods, apparatuses, and systems for performing nucleic acid sequencing reactions and molecular binding reactions in a microfluidic channel. The methods, apparatuses, and systems can include a restriction barrier to restrict movement of a particle to which a nucleic acid is attached. Furthermore, the methods, apparatuses, and systems can include hydrodynamic focusing of a delivery flow. In addition, the methods, apparatuses, and systems can reduce non-specific interaction with a surface of the microfluidic channel by providing a protective flow between the surface and a delivery flow.
    Type: Application
    Filed: October 22, 2008
    Publication date: June 17, 2010
    Inventors: Narayanan Sundararajan, Lei Sun, Yuegang Zhang, Xing Su, Selena Chan, Tae-Woong Koo, Andrew A. Berlin
  • Patent number: 7705222
    Abstract: The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nano-barcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: April 27, 2010
    Assignee: Intel Corporation
    Inventors: Selena Chan, Xing Su, Mineo Yamakawa
  • Patent number: 7608305
    Abstract: The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210. Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: October 27, 2009
    Assignee: Intel Corporation
    Inventors: Selena Chan, Sunghoon Kwon, Narayan Sundararajan
  • Publication number: 20090262994
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Application
    Filed: January 26, 2009
    Publication date: October 22, 2009
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 7606403
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: October 20, 2009
    Assignee: Intel Corporation
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 7531726
    Abstract: The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nanobarcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nanobarcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and scanning probe microscopy (SPM) analysis. Compositions comprising coded probes are also disclosed herein.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 12, 2009
    Assignee: Intel Corporation
    Inventors: Selena Chan, Xing Su, Mineo Yamakawa
  • Patent number: 7476501
    Abstract: The methods and apparatus disclosed herein concern nucleic acid sequencing by enhanced Raman spectroscopy. In certain embodiments of the invention, exonuclease treatment of the nucleic acids 109 results in the release of nucleotides 110. The nucleotides may pass from a reaction chamber 101 through a microfluidic channel 102 and enter a nanochannel or microchannel 103. The nanochannel or microchannel 103 may be packed with nanoparticle 111 aggregates containing hot spots for Raman detection. As the nucleotides 110 pass through the nanoparticle 111 hot spots, they may be detected by surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS). Identification of the sequence of nucleotides 110 released from the nucleic acid 109 provides the nucleic acid sequence. Other embodiments of the invention concern apparatus 100 for nucleic acid sequencing.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: January 13, 2009
    Assignee: Intel Corporation
    Inventors: Selena Chan, Xing Su, Tae-Woong Koo