Patents by Inventor Seppo J. Lehtonen

Seppo J. Lehtonen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230262899
    Abstract: An apparatus for mounting on a circuit board is provided. The apparatus may include a circuit board mount packaging and a battery. The circuit board mount packaging may include a cavity, a first internal lead, and a second internal lead. The first internal lead may be connect to a first external pin and the second internal lead may be connected to a second external pin. The battery may be disposed within the cavity of the circuit board mount packaging. The battery may comprise an anode and a cathode. The anode may be wire bond connected to the first internal lead and the cathode may be wire bond connected to the second internal lead.
    Type: Application
    Filed: December 16, 2022
    Publication date: August 17, 2023
    Inventors: Konstantinos Gerasopoulos, Jason E. Tiffany, Seppo J. Lehtonen, Vanessa O. Rojas, Spencer A. Langevin, Bing Tan
  • Patent number: 11067449
    Abstract: A multispectral imager includes processing circuitry, an illumination assembly, a detector assembly, and a focusing assembly. The illumination assembly includes an array of illumination elements controlled by the processing circuitry to illuminate a scene. The detector assembly includes a detector array controlled by the processing circuitry to capture images from the scene at different wavelengths. The focusing assembly includes a lens and is controlled by the processing circuitry to adjust a focal point for the detector array. The processing circuitry generates and processes the images from the scene, taken at different wavelengths and focal points, combines the images to form a multispectral image cube for the scene, and determines a composition of an object within the scene based on a spectral profile of the multispectral image cube.
    Type: Grant
    Filed: September 5, 2020
    Date of Patent: July 20, 2021
    Assignee: The Johns Hopkins University
    Inventors: Jorge I. Nunez Sanchez, Rachel L. Klima, Scott L. Murchie, Seppo J. Lehtonen, John D. Boldt, Jacob M. Greenberg, Bryan J. Maas, Kyle L. Anderson, Trevor W. Palmer, Heidi E. Warriner
  • Publication number: 20210096027
    Abstract: A multispectral imager includes processing circuitry, an illumination assembly, a detector assembly, and a focusing assembly. The illumination assembly includes an array of illumination elements controlled by the processing circuitry to illuminate a scene. The detector assembly includes a detector array controlled by the processing circuitry to capture images from the scene at different wavelengths. The focusing assembly includes a lens and is controlled by the processing circuitry to adjust a focal point for the detector array. The processing circuitry generates and processes the images from the scene, taken at different wavelengths and focal points, combines the images to form a multispectral image cube for the scene, and determines a composition of an object within the scene based on a spectral profile of the multispectral image cube.
    Type: Application
    Filed: September 5, 2020
    Publication date: April 1, 2021
    Inventors: Jorge I. Nunez Sanchez, Rachel L. Klima, Scott L. Murchie, Seppo J. Lehtonen, John D. Boldt, Jacob M. Greenberg, Bryan J. Maas, Kyle L. Anderson, Trevor W. Palmer, Heidi E. Warriner
  • Patent number: 9844169
    Abstract: A multi-chip module is provided including a multiplier configured to multiply a frequency of an input signal into a predetermined Ka-band frequency center channel, a modulator configured to modulate the center channel, and an amplifier configured to amplify a modulated signal for output.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: December 12, 2017
    Assignee: The Johns Hopkins University
    Inventors: Daniel E. Matlin, Sheng Cheng, Seppo J. Lehtonen, John E. Penn, Perry M. Malouf, Matthew P. Angert, Christopher B. Haskins, Avinash Sharma, Jacob P. Treadway, Robert E. Wallis
  • Publication number: 20160126891
    Abstract: A multi-chip module is provided including a multiplier configured to multiply a frequency of an input signal into a predetermined Ka-band frequency center channel, a modulator configured to modulate the center channel, and an amplifier configured to amplify a modulated signal for output.
    Type: Application
    Filed: September 1, 2015
    Publication date: May 5, 2016
    Inventors: Daniel E. Matlin, Sheng Cheng, Seppo J. Lehtonen, John E. Penn, Perry M. Malouf, Matthew P. Angert, Christopher B. Haskins, Avinash Sharma, Jacob P. Treadway, Robert E. Wallis
  • Patent number: 6881593
    Abstract: A semiconductor die adapter assembly includes a semiconductor die cut from a wafer, the die having an active surface including bond pads. A die adapter, also having bond pads, is bonded to the semiconductor die. Die-to-adapter connectors electrically connect the die bond pads to the adapter bond pads. Finally, adapter-to-substrate connectors electrically connect the adapter bond pads to a device substrate. Having bond pads on the die adapter eliminates the need to break and remake the electrical connections to the original bond pads on the die during burn-in testing of the die.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: April 19, 2005
    Assignee: The Johns Hopkins University
    Inventors: Binh Q. Le, Ark L. Lew, Harry K. Charles, Jr., Paul D. Schwartz, Seppo J. Lehtonen, Sharon X. Ling
  • Patent number: 6733823
    Abstract: A method of electrolessly gold plating copper on a printed circuit board (PCB). Starting with a copper patterned PCB, steps include: clean with ultrasonic agitation with the PCB initially oriented vertically and gradually moved to a 45° angle; rinse; sulfuric acid bath with ultrasonic and mechanical agitation; rinse; another sulfuric acid bath with ultrasonic and mechanical agitation; plate the copper with palladium with ultrasonic agitation with the PCB initially oriented at a 45° angle and flipped half way through to opposing 45° angle; rinse; post dip in sulfuric acid; rinse; electrolessly nickel plate with mechanical agitation; rinse; nitrogen blow dry; visual inspection for nickel coverage of the copper; hydrochloric acid bath with manual agitation; rinse; if full nickel coverage was not achieved, repeat preceding steps starting with second sulfuric acid bath; gold flash plate to establish a first layer of gold; rinse; autocatalytic gold plate; rinse; and nitrogen blow dry.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: May 11, 2004
    Assignee: The Johns Hopkins University
    Inventors: David M. Lee, Arthur S. Francomacaro, Seppo J. Lehtonen, Harry K. Charles, Jr.
  • Publication number: 20030011060
    Abstract: A semiconductor die adapter assembly includes a semiconductor die cut from a wafer, the die having an active surface including bond pads. A die adapter, also having bond pads, is bonded to the semiconductor die. Die-to-adapter connectors electrically connect the die bond pads to the adapter bond pads. Finally, adapter-to-substrate connectors electrically connect the adapter bond pads to a device substrate. Having bond pads on the die adapter eliminates the need to break and remake the electrical connections to the original bond pads on the die during burn-in testing of the die.
    Type: Application
    Filed: May 31, 2002
    Publication date: January 16, 2003
    Inventors: Binh Q. Le, Ark L. Lew, Harry K. Charles,, Paul D. Schwartz, Seppo J. Lehtonen, Sharon X. Ling
  • Publication number: 20020182308
    Abstract: A method of electrolessly gold plating copper on a printed circuit board (PCB). Starting with a copper patterned PCB, steps include: clean with ultrasonic agitation with the PCB initially oriented vertically and gradually moved to a 45° angle; rinse; sulfuric acid bath with ultrasonic and mechanical agitation; rinse; another sulfuric acid bath with ultrasonic and mechanical agitation; plate the copper with palladium with ultrasonic agitation with the PCB initially oriented at a 45° angle and flipped half way through to opposing 45° angle; rinse; post dip in sulfuric acid; rinse; electrolessly nickel plate with mechanical agitation; rinse; nitrogen blow dry; visual inspection for nickel coverage of the copper; hydrochloric acid bath with manual agitation; rinse; if full nickel coverage was not achieved, repeat preceding steps starting with second sulfuric acid bath; gold flash plate to establish a first layer of gold; rinse; autocatalytic gold plate; rinse; and nitrogen blow dry.
    Type: Application
    Filed: April 2, 2002
    Publication date: December 5, 2002
    Inventors: David M. Lee, Arthur S. Francomacaro, Seppo J. Lehtonen, Harry K. Charles