Patents by Inventor Sergio Brito Mendes

Sergio Brito Mendes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210190772
    Abstract: Immunosensors according to present embodiments combine a sandwich bioassay with an electrochemical surface plasmon resonance device for electrochemical detection of analytes from a sample, whereby a coated substrate for receiving an electroactive probe may be located in a flow cell, and the coated substrate comprises a first layer which is a silver (Ag) layer and a second layer which is a gold (Au) layer arranged so that the gold layer isolates the silver layer from an operating environment.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 24, 2021
    Inventors: Sergio Brito Mendes, Martin O'Toole
  • Publication number: 20190361015
    Abstract: Immunosensors according to present embodiments combine a sandwich bioassay with an electro-active, integrated optical waveguide (EA-IOW) for the detection of infectious pathogens and other analytes from a sample, whereby the electro-active waveguide surface is functionalized with a capture antibody capable of specific binding with a particular antigen. This functionalized arrangement then promotes the binding of a secondary, labeled antibody serving as a redox probe, which produces an analytical signal having unique spectral and electrochemical properties for the detection of virus antigens, pathogens, and other analytes that bind to proteins.
    Type: Application
    Filed: January 23, 2018
    Publication date: November 28, 2019
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Sergio Brito Mendes, Martin O'Toole
  • Patent number: 6778319
    Abstract: A multi-port optical amplifier chip has an inner cladding layer sandwiched between a pair of outer cladding layers, a plurality of active core elements disposed substantially within the inner cladding layer to receive optical signals at respective input ports and transmit amplified optical signals at respective output ports, a pair of reflecting surfaces on opposing sides of the inner cladding and at least one pump source. The pump source directs pump light into the inner cladding layer where it is confined to bounce back-and-forth across the active core elements thereby enhancing the absorption of pump light into the core elements, hence increasing gain. Greater than 5 dB over the C-band (1930 nm-1965 nm) in less than 10 cm is expected with a phosphate glass material co-doped with greater than 2 weight percent Erbium and 10 weight percent Ytterbium. A number of fiber drawing based approaches are contemplated for manufacturing the amplifiers to achieve this performance and reduce cost.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: August 17, 2004
    Assignee: NP Photonics, Inc.
    Inventors: Arturo Chavez-Pirson, Sergio Brito Mendes, Shibin Jiang, Yushi Kaneda, Thomas Nikolajsen
  • Publication number: 20040109225
    Abstract: A compact, high-power, low-cost broadband ASE source is achieved by multi-mode pumping a highly doped multi-component glass fiber in standard ASE source configurations. The multi-mode pump is coupled into and propagates in the fiber cladding exciting the rare-earth dopant ions (Er,Yb) in the fiber core. The multi-component glass includes a network former selected from either phosphate (P2O5) or tellurite (TeO2) and is doped with at least 0.25 weight percent rare-earth dopants. The high concentrations of dopants supported by these glasses absorbs the multi-mode pump in a short length, less than 100 cm, and provides high saturated output powers.
    Type: Application
    Filed: December 6, 2002
    Publication date: June 10, 2004
    Applicant: NP Photonics, Inc.
    Inventors: Yongdan Hu, Sergio Brito Mendes, Shibin Jiang, Sandrine Hocde, Yushi Kaneda
  • Patent number: 6738186
    Abstract: A compact, low-cost mid-gain Erbium Micro-Fiber Amplifier (EMFA) is provided by multi-mode pumping a micro fiber formed from a specialty multi-component glass and highly co-doped with Er:Yb. The specialty glass exhibits a much higher core absorption coefficient than standard glasses. As a result, the lower order modes are rapidly absorbed in the fiber core. The abrupt change in the mode profile perturbs the higher order modes and mode couples them into the lower order modes within a very short length of fiber, less than 20 cm. This “absorptive mode coupling” effect can double the absorption efficiency of a circular symmetric micro fiber and extend the length over which such a highly doped fiber can be efficiently inverted. The combination of multi-mode pumping with short fiber lengths reduces the form factor and cost of EMFAs.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: May 18, 2004
    Assignee: NP Photonics, Inc.
    Inventors: Shibin Jiang, Sergio Brito Mendes, Gualtiero Nunzi Conti, Dan T. Nguyen, Ewan Malcolm Wright, Arturo Chavez-Pirson, Yushi Kaneda
  • Patent number: 6700697
    Abstract: The meters of coiled silica fiber in conventional R-EDFAs is replaced with an ultra-short high-gain waveguides formed of co-doped erbium-ytterbium multi-component glass a few centimeters in length. The compact R-EDA is pumped using non-conventional multi-mode pumps that couple to the waveguide cladding. The multi-component glasses support doping concentrations of the rare-earth ions erbium and ytterbium far in excess of levels believed possible with conventional glasses. These dopant levels in combination with the reflective scheme make a compact R-EDA with sufficient amplification possible.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: March 2, 2004
    Assignee: NP Photonics, Inc.
    Inventors: Thomas Nikolajsen, Arturo Chavez-Pirson, Yushi Kaneda, Shibin Jiang, Sergio Brito Mendes, Nayer Eradat
  • Publication number: 20030169489
    Abstract: A compact, low-cost mid-gain Erbium Micro-Fiber Amplifier (EMFA) is provided by multi-mode pumping a micro fiber formed from a specialty multi-component glass and highly co-doped with Er:Yb. The specialty glass exhibits a much higher core absorption coefficient than standard glasses. As a result, the lower order modes are rapidly absorbed in the fiber core. The abrupt change in the mode profile perturbs the higher order modes and mode couples them into the lower order modes within a very short length of fiber, less than 20 cm. This “absorptive mode coupling” effect can double the absorption efficiency of a circular symmetric micro fiber and extend the length over which such a highly doped fiber can be efficiently inverted. The combination of multi-mode pumping with short fiber lengths reduces the form factor and cost of EMFAs.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 11, 2003
    Applicant: NP Photonics, Inc.
    Inventors: Shibin Jiang, Sergio Brito Mendes, Gualtiero Nunzi Conti, Dan T. Nguyen, Ewan Malcolm Wright, Arturo Chavez-Pirson, Yushi Kaneda
  • Publication number: 20030137722
    Abstract: The meters of coiled silica fiber in conventional R-EDFAs is replaced with an ultra-short high-gain waveguides formed of co-doped erbium-ytterbium multi-component glass a few centimeters in length. The compact R-EDA is pumped using non-conventional multi-mode pumps that couple to the waveguide cladding. The multi-component glasses support doping concentrations of the rare-earth ions erbium and ytterbium far in excess of levels believed possible with conventional glasses. These dopant levels in combination with the reflective scheme make a compact R-EDA with sufficient amplification possible.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 24, 2003
    Applicant: NP Photonics, Inc.
    Inventors: Thomas Nikolajsen, Arturo Chavez-Pirson, Yushi Kaneda, Shibin Jiang, Sergio Brito Mendes, Nayer Eradat
  • Publication number: 20030048524
    Abstract: A multi-port optical amplifier chip has an inner cladding layer sandwiched between a pair of outer cladding layers, a plurality of active core elements disposed substantially within the inner cladding layer to receive optical signals at respective input ports and transmit amplified optical signals at respective output ports, a pair of reflecting surfaces on opposing sides of the inner cladding and at least one pump source. The pump source directs pump light into the inner cladding layer where it is confined to bounce back-and-forth across the active core elements thereby enhancing the absorption of pump light into the core elements, hence increasing gain. Greater than 5 dB over the C-band (1930 nm-1965 nm) in less than 10 cm is expected with a phosphate glass material co-doped with greater than 2 weight percent Erbium and 10 weight percent Ytterbium. A number of fiber drawing based approaches are contemplated for manufacturing the amplifiers to achieve this performance and reduce cost.
    Type: Application
    Filed: September 10, 2001
    Publication date: March 13, 2003
    Inventors: Arturo Chavez-Pirson, Sergio Brito Mendes, Shibin Jiang, Yushi Kaneda, Thomas Nikolajsen
  • Patent number: 6529318
    Abstract: A total internal reflection (TIR) coupler for side coupling pump light into a fiber for use in an amplifier or laser is mounted on a flat surface of the fiber's inner cladding. The TIR coupler has a reflecting surface that forms an angle of taper a with the inner cladding, which is effective to reflect pump light at a preselected angle of incidence &thgr;inc and satisfy a TIR condition at its reflecting surface for folding pump light into the fiber. The pump light is launched into the fiber at an angle that also satisfies a TIR condition for guiding pump light inside the inner cladding.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: March 4, 2003
    Assignee: NP Photonics, Inc.
    Inventors: Yushi Kaneda, Sergio Brito Mendes, Shibin Jiang