Patents by Inventor Sergio Fantini

Sergio Fantini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9678284
    Abstract: A device (1) for cleaning an optical waveguide end (2) comprises a guide portion (3) for receiving the optical waveguide end (2) in a stable position and a rotatably mounted spool (4) onto which a flexible cleaning element (5) is wound. The guide portion (3) and the spool (4) are positioned relative to one another such that an optical waveguide end (2) received by the guide portion (3) is able to be pressed against the wound cleaning element (5). The cleaning element (5) is able to be unwound from the spool (4) such that different portions of the cleaning element (5) are able to be applied to the optical waveguide end (2) during unwinding.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: June 13, 2017
    Assignee: DIAMOND SA
    Inventors: Victor Coggi, Francois Caloz, Dionigi Sergio Fantini
  • Publication number: 20170055893
    Abstract: A method for determining a hemoglobin saturation of a volume-oscillating vascular compartment in tissue includes receiving data representing measurements of a number of oscillating hemoglobin concentrations from the tissue and determining the hemoglobin saturation of the volume-oscillating vascular compartment to exclude an effect of an oscillating rate of supply of oxygenated blood to a portion of the tissue including removing a first contribution on one or more of the oscillating hemoglobin concentration measurements from at least one of the measurements, the first contribution being phase offset relative to said measurements.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Inventors: Jana M. Kainerstorfer, Sergio Fantini, Angelo Sassaroli
  • Publication number: 20170017048
    Abstract: A device (1) for cleaning an optical waveguide end (2) comprises a guide portion (3) for receiving the optical waveguide end (2) in a stable position and a rotatably mounted spool (4) onto which a flexible cleaning element (5) is wound. The guide portion (3) and the spool (4) are positioned relative to one another such that an optical waveguide end (2) received by the guide portion (3) is able to be pressed against the wound cleaning element (5). The cleaning element (5) is able to be unwound from the spool (4) such that different portions of the cleaning element (5) are able to be applied to the optical waveguide end (2) during unwinding.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 19, 2017
    Inventors: Victor COGGI, Francois CALOZ, Dionigi Sergio FANTINI
  • Publication number: 20150366514
    Abstract: A method for inferring characteristics of a physiological system includes measuring one or more physiological signals in the physiological system and inferring characteristics of the physiological system from the one or more measured physiological signals using a multiple vascular compartment hemodynamic model, the multiple vascular compartment hemodynamic model defining a relationship between the one or more measured physiological signals and the characteristics of the physiological system. When the one or more measured physiological signals include coherent oscillations at a plurality of frequencies, the method is termed coherent hemodynamics spectroscopy. The multiple vascular compartment hemodynamic model is based on an average time spent by blood in one or more of said vascular compartments and a rate constant of oxygen diffusion.
    Type: Application
    Filed: October 21, 2013
    Publication date: December 24, 2015
    Inventor: Sergio Fantini
  • Patent number: 7962187
    Abstract: Systems and methods are disclosed for detecting at least one region of a sample having an absorption level different from a background level of absorption in the sample by obtaining thicknesses of the sample and intensities of light transmitted through the sample at a plurality of locations. The system includes glass plates (10) for compressing the tissue, distance sensors (20, 30), illuminations fibers (40) connected to a light source (70), and collection fibers (50) connected to spectrograph (110). Spatial second derivatives are calculated from products of the thicknesses of the sample and the intensities of the transmitted light for the locations. The data points are compared to detect the region of the sample having an absorption level different from the background level of absorption within the sample. The new systems and method can be used to optically image, detect, and characterize tissue, lesions, such as cancer.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 14, 2011
    Assignee: Tufts University
    Inventor: Sergio Fantini
  • Publication number: 20090062685
    Abstract: Near-infrared spectroscopy (NIRS) is employed to examine the neuronal activity and vascular response of a peripheral nerve for research or clinical purposes. An embodiment for implementing this approach has: a nerve stimulator; a tissue spectrometer; a stimulation probe adapted to apply a stimulation from the nerve stimulator to a peripheral nerve; at least one illumination optical fiber, where each illumination optical fiber is adapted to transmit a near-infrared source light to the peripheral nerve after the stimulation is applied; and a detection optical fiber adapted to collect and deliver to the tissue spectrometer a returning light from the peripheral nerve after each source light is transmitted to the peripheral nerve. The returning light has a returning intensity, and the tissue spectrometer can determine the returning intensity to provide readings of optical diffuse reflectance of the peripheral nerve after the stimulation is applied.
    Type: Application
    Filed: March 16, 2007
    Publication date: March 5, 2009
    Applicants: TRUSTEES OF BOSTON UNIVERSITY, TRUSTEES OF TUFTS COLLEGE
    Inventors: Peter R. Bergethon, Sergio Fantini
  • Publication number: 20060106293
    Abstract: Systems and methods are disclosed for detecting at least one region of a sample having an absorption level different from a background level of absorption in the sample by obtaining thicknesses of the sample and intensities of light transmitted through the sample at a plurality of locations. The system includes glass plates (10) for compressing the tissue, distance sensors (20, 30), illuminations fibers (40) connected to a light source (70), and collection fibers (50) connected to spectrograph (110). Spatial second derivatives are calculated from products of the thicknesses of the sample and the intensities of the transmitted light for the locations. The data points are compared to detect the region of the sample having an absorption level different from the background level of absorption within the sample. The new systems and method can be used to optically image, detect, and characterize tissue, lesions, such as cancer.
    Type: Application
    Filed: March 13, 2003
    Publication date: May 18, 2006
    Inventor: Sergio Fantini
  • Patent number: 6985763
    Abstract: A method for measuring venous oxygen saturation levels has steps of measuring optical absorption oscillation data at the respiratory frequency at a plurality of wavelengths (2). A reduced scattering coefficient and an absorption coefficient are determined for the tissue, with the result that an effective path length can be determined (6). Data processing is performed to calculate amplitudes for the absorption oscillation data that are translated into oxygenated and deoxygenated hemoglobin concentrations for the venous compartment (8). A method of the invention does not required mechanical ventilation devices or venous perturbation. Additional method steps may entail verifying that the measured absorption oscillation data results from the venous compartment.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: January 10, 2006
    Assignee: Tufts University
    Inventors: David Boas, Maria Angela Franceschini, Sergio Fantini
  • Publication number: 20040122300
    Abstract: A method for measuring venous oxygen saturation levels has steps of measuring optical absorption oscillation data at the respiratory frequency at a plurality of wavelengths (2). A reduced scattering coefficient and an absorption coefficient are determined for the tissue, with the result that an effective path length can be determined (6). Data processing is performed to calculate amplitudes for the absorption oscillation data that are translated into oxygenated and deoxygenated hemoglobin concentrations for the venous compartment (8). A method of the invention does not required mechanical ventilation devices or venous perturbation. Additional method steps may entail verifying that the measured absorption oscillation data results from the venous compartment.
    Type: Application
    Filed: February 20, 2004
    Publication date: June 24, 2004
    Inventors: David Boas, Maria Angela Franceschini, Sergio Fantini
  • Patent number: 6216021
    Abstract: The present invention involves a time-resolved measurement method for the real time, non-invasive, simultaneous measurement of time-varying and other hemoglobin compartment saturation. This capability achieves absolute pulse oximetry and oximetry for tissue, without calibration based on a population of healthy people. Calculations conducted by the invention use quantitative measurement of tissue absorption spectrum for tissue saturation, and an amplitude of absorption oscillations for the time-varying hemoglobin compartments at various wavelengths. The invention illuminates tissue and senses light at predetermined distances apart on the tissue to be measured. Intensity and phase data are acquired from source-detector pairs to calculate absolute tissue optical properties from time-resolved measurement data, namely, a reduced scattering coefficient and an absorption coefficient.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: April 10, 2001
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Maria Angela Franceschini, Sergio Fantini, Enrico Gratton
  • Patent number: 6192261
    Abstract: The quantitative determination of various materials in highly scattering media such as living tissue may be determined in an external, photometric manner by the use of a plurality of light sources positioned at differing distances from a sensor. The light from said sources is amplitude modulated, and, in accordance with conventional frequency domain fluorometry or phosphorimetry techniques, the gain of the sensor is modulated at a frequency different from the frequency of the light modulation. Data may be acquired from each of the light sources at differing distances at a frequency which is the difference between the two frequencies described above. From these sets of data from each individual light source, curves may be constructed, and the slopes used to quantitatively determine the amount of certain materials present, for example glucose, oxyhemoglobin and deoxyhemoglobin in living tissue.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: February 20, 2001
    Assignee: I.S.S. (USA), Inc.
    Inventors: Enrico Gratton, Sergio Fantini, Maria Angela Franceschini, William Mantulin, Beniamino Barbieri
  • Patent number: 5772587
    Abstract: The quantitative determination of various materials in highly scattering media such as living tissue may be determined in an external, photometric manner by the use of a plurality of light sources positioned at differing distances from a sensor. The light from said sources is amplitude modulated, and, in accordance with conventional frequency domain fluorometry or phosphorimetry techniques, the gain of the sensor is modulated at a frequency different from the frequency of the light modulation. Data may be acquired from each of the light sources at differing distances at a frequency which is the difference between the two frequencies described above. From these sets of data from each individual light source, curves may be constructed, and the slopes used to quantitatively determine the amount of certain materials present, for example glucose, oxyhemoglobin and deoxyhemoglobin in living tissue.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: June 30, 1998
    Assignees: The Board of Trustees of The University of Illinois, I.S.S. (USA) Inc.
    Inventors: Enrico Gratton, Sergio Fantini, Maria Angela Franceschini, William Mantulin, Beniamino Barbieri
  • Patent number: 5497769
    Abstract: The quantitative determination of various materials in highly scattering media such as living tissue may be determined in an external, photometric manner by the use of a plurality of light sources positioned at differing distances from a sensor. The light from said sources is amplitude modulated, and, in accordance with conventional frequency domain fluorometry or phosphorimetry techniques, the gain of the sensor is modulated at a frequency different from the frequency of the light modulation. Data may be acquired from each of the light sources at differing distances at a frequency which is the difference between the two frequencies described above. From these sets of data from each individual light source, curves may be constructed, and the slopes used to quantitatively determine the amount of certain materials present, for example oxyhemoglobin and deoxyhemoglobin in living tissue.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: March 12, 1996
    Assignees: I.S.S. (USA) Inc., The Board of Trustees of the University of Illinois
    Inventors: Enrico Gratton, Sergio Fantini, Maria A. Franceschini, William Mantulin, Beniamino Barbieri
  • Patent number: 5492118
    Abstract: The relative concentration of a material such as glucose in a turbid medium such as living tissue may determining the scattering coefficient of the light that has passed through the turbid medium; and comparing the scattering coefficient with a previous scattering coefficient determined with respect to the turbid medium.
    Type: Grant
    Filed: June 3, 1994
    Date of Patent: February 20, 1996
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Enrico Gratton, John Maier, Maria A. Franceschini, Sergio Fantini, Scott A. Walker