Patents by Inventor Sergio Lemaitre

Sergio Lemaitre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230320686
    Abstract: Methods and systems are provided for increasing a quality of computed tomography (CT) images generated by a CT system by altering a shape of a focal spot of an X-ray emitter of the CT system. In one embodiment, a method comprises controlling the CT system to focus a beam of electrons generated by a cathode of the CT system at a plurality of focal spots on a surface of an target of the CT system; generating a composite focal spot from the plurality of focal spots; and obtaining projection data of the CT system with the composite focal spot. For example, two focal spots may be combined to generate the composite focal spot. By combining focal spots to generate composite focal spots, a quality of a resulting view produced by the CT system may be increased.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 12, 2023
    Inventors: Jean-Baptiste Thibault, Michael J. Utschig, Ryan J. Lemminger, Sergio Lemaitre, Dominique Poincloux, Uwe Wiedmann
  • Publication number: 20230197397
    Abstract: Various methods and systems are provided for an X-ray tube cathode focusing element. In one example, a focusing element is configured with three electron emission filaments, an integrated edge focusing, and a bias voltage. The integrated edge focusing may include a continuous single architecture with rounded edges, and a voltage of the focusing element may be negatively biased relative to a voltage of the electron emission filaments.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Sergio Lemaitre, Kevin Kruse
  • Publication number: 20230050180
    Abstract: Various systems and methods are provided for a biased cathode assembly of an X-ray tube with improved thermal management and a method of manufacturing same. In one example, a cathode assembly of an X-ray tube comprises an emitter assembly including an emitter coupled to an emitter support structure, and an electrode assembly including an electrode stack and a plurality of bias electrodes. The emitter assembly including a plurality of independent components that are coupled together. The electrode assembly including a plurality of independent components that are coupled together, and the emitter assembly being coupled to the electrode assembly.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: Andrew Thomas Cross, Uwe Wiedmann, Marshall Gordon Jones, Carey Rogers, John Scott Price, Joseph Darryl Michael, Sergio Lemaitre, Fulton Jose Lopez, Vasile Bogdan Neculaes, Steve Buresh, David Wagner
  • Patent number: 11515117
    Abstract: Various systems and methods are provided for a biased cathode assembly of an X-ray tube with improved thermal management and a method of manufacturing same. In one example, a cathode assembly of an X-ray tube comprises an emitter assembly including an emitter coupled to an emitter support structure, and an electrode assembly including an electrode stack and a plurality of bias electrodes. The emitter assembly including a plurality of independent components that are coupled together. The electrode assembly including a plurality of independent components that are coupled together, and the emitter assembly being coupled to the electrode assembly.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 29, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Andrew Thomas Cross, Uwe Wiedmann, Marshall Gordon Jones, Carey Rogers, John Scott Price, Joseph Darryl Michael, Sergio Lemaitre, Fulton Jose Lopez, Vasile Bogdan Neculaes, Steve Buresh, David Wagner
  • Publication number: 20220068585
    Abstract: Various systems and methods are provided for a biased cathode assembly of an X-ray tube with improved thermal management and a method of manufacturing same. In one example, a cathode assembly of an X-ray tube comprises an emitter assembly including an emitter coupled to an emitter support structure, and an electrode assembly including an electrode stack and a plurality of bias electrodes. The emitter assembly including a plurality of independent components that are coupled together. The electrode assembly including a plurality of independent components that are coupled together, and the emitter assembly being coupled to the electrode assembly.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Andrew Thomas Cross, Uwe Wiedmann, Marshall Gordon Jones, Carey Rogers, John Scott Price, Joseph Darryl Michael, Sergio Lemaitre, Fulton Jose Lopez, Vasile Bogdan Neculaes, Steve Buresh, David Wagner
  • Patent number: 11039809
    Abstract: A system and method for calibrating an X-ray tube is provided in which the X-ray tube includes an electronic storage medium associated with the X-ray tube on which calibration information for the X-ray tube is stored. The calibration information includes operating parameters for the focusing elements of the X-ray tube for desired focal spots, tolerance limits for variations in the focal spots and a number of gradient coefficient values corresponding to certain modulation transfer functions (MTF) for the X-ray tube that the imaging system can employ in an iterative manner to correct the operating parameters of the focusing elements to achieve the desired focal spot. This automatic iterative process significantly reduces the time required for the calibration of the X-ray tube. The system and method also employs scan sequencing to minimize the heat generated enabling the scans to be completed in a shorter amount of time than prior calibration processes.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: June 22, 2021
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Sergio Lemaitre, John Boudry, Bradley Gabrielse, Ryan Lemminger, Spencer Cutler
  • Patent number: 10605687
    Abstract: In the present invention, a pressure measurement device for determining the vacuum level within the evacuated housing of a vacuum electrode device is provided that includes an electrically conductive enclosure secured to an interior surface of the housing, an electrically conductive electrode extending through an aperture in the housing, the electrode having a tip at one end positioned within the interior of the housing inside the enclosure to define a gap between the tip and the enclosure and a conductive lead at a second end disposed outside of the housing, and a voltage source connected to the conductive lead to supply a voltage potential to the tip of the electrode. A voltage difference produced between the electrode and the enclosure ionizes gas within the enclosure causing a measurable current to flow between the electrode and the enclosure which can be used to determine the vacuum level in the housing.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: March 31, 2020
    Assignee: General Electric Company
    Inventors: Richard Michael Roffers, Sergio Lemaitre, Christian Bennett Fuller, Kalyan Koppisetty
  • Patent number: 10468222
    Abstract: In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emitters for generating an electron beam, where the pair of emitters are disposed in the casing at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 5, 2019
    Assignee: General Electric Company
    Inventor: Sergio Lemaitre
  • Publication number: 20190320994
    Abstract: A system and method for calibrating an X-ray tube is provided in which the X-ray tube includes an electronic storage medium associated with the X-ray tube on which calibration information for the X-ray tube is stored. The calibration information includes operating parameters for the focusing elements of the X-ray tube for desired focal spots, tolerance limits for variations in the focal spots and a number of gradient coefficient values corresponding to certain modulation transfer functions (MTF) for the X-ray tube that the imaging system can employ in an iterative manner to correct the operating parameters of the focusing elements to achieve the desired focal spot. This automatic iterative process significantly reduces the time required for the calibration of the X-ray tube. The system and method also employs scan sequencing to minimize the heat generated enabling the scans to be completed in a shorter amount of time than prior calibration processes.
    Type: Application
    Filed: April 19, 2019
    Publication date: October 24, 2019
    Inventors: Sergio Lemaitre, John Boudry, Bradley Gabrielse, Ryan Lemminger, Spencer Cutler
  • Patent number: 10431415
    Abstract: In the present invention, a cathode is formed with one or more emitters energized to emit electrons that are accelerated towards an anode or target spaced from the cathode. Between the cathode and the target is disposed an ion barrier electrode defining an aperture therein disposed in alignment with the emitters to enable the electron beam to pass through the electrode. The barrier electrode is operably connected to a voltage supply to positively bias the barrier electrode, and the barrier electrode is shaped to minimize the required supply voltage. This positive voltage bias creates a positive potential barrier across the electrode sufficient to repel positive ions generated by the electron beam, protecting the cathode from contact with the ions and increasing the stability of the focal spot generated by the tube by maintaining the ions within the drift region between the ion barrier and the target.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: October 1, 2019
    Assignee: General Electric Company
    Inventor: Sergio Lemaitre
  • Patent number: 10297415
    Abstract: An improved cathode assembly is disclosed. The improved cathode assembly provides a deep channel for holding filament that enables generation of small focal spots, but is not limited in achieving larger focal spot sizes. The cathode assembly includes at least one deep channel and a filament arranged in a deep channel. The deep channel is configured in a cathode cup surface of the cathode assembly. The filament is arranged in the deep channel for enabling emission of electron beams from the cathode assembly.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: May 21, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Anija M, Sergio Lemaitre
  • Patent number: 10290460
    Abstract: An X-ray tube is provided. The X-ray tube includes an electron beam source including a cathode configured to emit an electron beam. The X-ray tube also includes an anode assembly including an anode configured to receive the electron beam and to emit X-rays when impacted by the electron beam. The X-ray tube further includes a gridding electrode disposed about a path of the electron beam between the electron beam source and the anode assembly. The gridding electrode, when powered at a specific level, is configured to grid the electron beam in synchronization with planned transitions during a dynamic focal spot mode.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 14, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michael John Utschig, Uwe Wiedmann, Bruno Kristiaan Bernard De Man, Sergio Lemaitre, Mark Alan Frontera, Antonio Caiafa, Jiahua Fan, Adam Budde
  • Patent number: 10121629
    Abstract: In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emission surfaces for generating an electron beam, where the pair of emission surfaces are disposed in the cathode assembly at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam by adjustment of a positive or negative biasing voltage applied to the extraction electrode, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: November 6, 2018
    Assignee: General Electric Company
    Inventor: Sergio Lemaitre
  • Publication number: 20180144902
    Abstract: In the present invention, a cathode is formed with one or more emitters energized to emit electrons that are accelerated towards an anode or target spaced from the cathode. Between the cathode and the target is disposed an ion barrier electrode defining an aperture therein disposed in alignment with the emitters to enable the electron beam to pass through the electrode. The barrier electrode is operably connected to a voltage supply to positively bias the barrier electrode, and the barrier electrode is shaped to minimize the required supply voltage. This positive voltage bias creates a positive potential barrier across the electrode sufficient to repel positive ions generated by the electron beam, protecting the cathode from contact with the ions and increasing the stability of the focal spot generated by the tube by maintaining the ions within the drift region between the ion barrier and the target.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 24, 2018
    Inventor: Sergio Lemaitre
  • Patent number: 9953797
    Abstract: A flat emitter configured for use in an X-ray tube is presented. The X-ray tube includes a first conductive section including a first terminal. Further, the X-ray tube includes a second conductive section including a second terminal. Also, the X-ray tube includes a third conductive section disposed between the first conductive section and the second conductive section, wherein the third conductive section is configured to emit electrons toward a determined focal spot, and wherein the third conductive section includes a plurality of slits subdividing the third conductive section into a winding track coupled to the first conductive section and the second conductive section, wherein at least two of the plurality of slits are interwound spirally to compose the winding track, and wherein the winding track is configured to expand and contract based on heat provided to the third conductive section.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: April 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Xi Zhang, Mark Alan Frontera, Sergio Lemaitre, John Scott Price, Uwe Wiedmann
  • Publication number: 20180096816
    Abstract: In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emission surfaces for generating an electron beam, where the pair of emission surfaces are disposed in the cathode assembly at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam by adjustment of a positive or negative biasing voltage applied to the extraction electrode, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventor: Sergio Lemaitre
  • Patent number: 9928985
    Abstract: In the present invention, an X-ray tube is provided including a cathode assembly with a cathode cup, and an emitter disposed within the cup configured to emit an electron beam therefrom. The emitter is formed with a central portion including legs with varying lengths and/or spaces formed therein. The legs including spaces of varying lengths provides additional emissive material at the center of the emitter to better withstand strikes from ions formed within the X-ray tube. The legs of varying overall lengths provides a void in the emitter through which the ions can pass without striking the emitter.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: March 27, 2018
    Assignee: General Electric Company
    Inventor: Sergio Lemaitre
  • Publication number: 20180068823
    Abstract: An X-ray tube is provided. The X-ray tube includes an electron beam source including a cathode configured to emit an electron beam. The X-ray tube also includes an anode assembly including an anode configured to receive the electron beam and to emit X-rays when impacted by the electron beam. The X-ray tube further includes a gridding electrode disposed about a path of the electron beam between the electron beam source and the anode assembly. The gridding electrode, when powered at a specific level, is configured to grid the electron beam in synchronization with planned transitions during a dynamic focal spot mode.
    Type: Application
    Filed: September 7, 2016
    Publication date: March 8, 2018
    Inventors: Michael John Utschig, Uwe Wiedmann, Bruno Kristiaan Bernard De Man, Sergio Lemaitre, Mark Alan Frontera, Antonio Caiafa, Jiahua Fan, Adam Budde
  • Patent number: 9865423
    Abstract: An emitter for a cathode of an X-ray tube is provided that includes a shaped emitting surface. The emitting surface is shaped in a suitable process in order to enable the emitting surface to focus electron beams emitted from the emitting surface on a focal spot on a target of less than 1.0 mm without the need for any additional focusing elements in the X-ray tube.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: January 9, 2018
    Assignee: General Electric Company
    Inventors: Sergio Lemaitre, Ben David Poquette, Ryan James Lemminger, Donald Robert Allen, Judson Sloan Marte, Gregory Alan Steinlage, Richard Michael Roffers
  • Publication number: 20170287671
    Abstract: In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emitters for generating an electron beam, where the pair of emitters are disposed in the casing at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventor: Sergio Lemaitre