Patents by Inventor Setsuo Nakajima

Setsuo Nakajima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7705354
    Abstract: A display device includes a main body, a support stand, and a display portion. The display portion includes a pixel having a TFT and a capacitor. The capacitor includes a capacitor electrode on an insulating surface, an insulating film on the capacitor electrode, and a pixel electrode of the TFT on the insulating film.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: April 27, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Shunpei Yamazaki, Jun Koyama, Setsuo Nakajima
  • Patent number: 7675060
    Abstract: Disclosed is a technique of improving the heat resistance of the aluminum gate electrode in bottom-gate-type TFT of which the active layer is made of a crystalline silicon film. A pattern of a laminate of a titanium film 102 and an aluminum film 103 is formed on a glass substrate 101. The pattern is to give a gate electrode 100. Then, the titanium film 102 is side-etched. Next, the layered substrate is heated to thereby intentionally form hillocks and whiskers on the surface of the aluminum pattern 103. Next, the aluminum pattern 103 acting as an anode is subjected to anodic oxidation to form an oxide film 105 thereon. The anodic oxidation extends to the lower edge of the aluminum pattern 103, at which the titanium layer was side-etched. Next, a gate-insulating film 106 and an amorphous silicon film are formed. A mask is formed over the pattern, which is to give the gate electrode, and then a nickel acetate solution is applied to the layered structure.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: March 9, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Naoaki Yamaguchi, Setsuo Nakajima
  • Patent number: 7655513
    Abstract: After crystallization of a semiconductor film is performed by irradiating first laser light (energy density of 400 to 500 mJ/cm2) in an atmosphere containing oxygen, an oxide film formed by irradiating the first laser light is removed. It is next performed to irradiate second laser light under an atmosphere that does not contain oxygen (at a higher energy density than that of the first laser light irradiation), thus to increase the flatness of the semiconductor film.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: February 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Hidekazu Miyairi
  • Patent number: 7635866
    Abstract: Protrusions called ridges are formed on the surface of a crystalline semiconductor film formed by a laser crystallization method or the like. A heat absorbing layer are formed below a semiconductor film. When the semiconductor film is crystallized by laser, a temperature difference is produced between a semiconductor film 1010 positioned above a heat absorbing layer 1011 and a semiconductor film 1013 of the other region to produce a difference in thermal expansion at the boundary of the outside end 1015 of the heat absorbing layer. This difference produces a strain to form a surface wave. The surface wave starting at the outer periphery of the heat absorbing layer is formed in the vicinity of the heat absorbing layer. When the semiconductor layer is solidified after it is melted, the protrusions of the surface wave remain as protrusions after the semiconductor film is solidified.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 22, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Setsuo Nakajima, Ritsuko Kawasaki
  • Publication number: 20090229756
    Abstract: In an atmospheric-pressure plasma processing apparatus, a first metal surface 21a of a first stage portion 21 of a stage 20 is exposed and an object to be processed W composed of a dielectric material is placed on the first metal surface 21a. A second stage portion 22 is disposed on a peripheral edge of the first stage portion 21. A solid dielectric layer 25 is disposed on a second metal 24 of the second stage portion 22. A peripheral portion of the object W is placed on an inner dielectric portion 26 of the solid dielectric layer 25. An electrode 11 generates a run up discharge D2 in a second movement range R2 above the second stage portion 22. Then, the electrode 11 is moved to a first movement range R1 above the first stage portion 21 and generates a regular plasma discharge D1.
    Type: Application
    Filed: September 15, 2006
    Publication date: September 17, 2009
    Applicant: SEKISUI CHEMICAL CO., LTD.
    Inventors: Setsuo Nakajima, Toshimasa Takeuchi, Junichi Matsuzaki, Satoshi Mayumi, Osamu Nishikawa, Naomichi Saito, Yoshinori Nakano, Makoto Fukushi, Yoshihiko Furuno
  • Patent number: 7588981
    Abstract: In a thin film transistor, a metallic element promoting crystallization of an amorphous silicon film is effectively removed and the productivity is improved. By using a silicon film containing an element belonging to the group 15 such as phosphorus through contact holes reaching a source region and a drain region, a metallic element promoting crystallization of an amorphous silicon film can be effectively removed or decreased and the productivity can be improved.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: September 15, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Setsuo Nakajima
  • Publication number: 20090185130
    Abstract: A method of fabricating a driver circuit for use with a passive matrix or active matrix electrooptical display device such as a liquid crystal display. The driver circuit occupies less space than heretofore. A circuit (stick crystal) having a length substantially equal to the length of one side of the matrix of the display device is used as the driver circuit. The circuit is bonded to one substrate of the display device, and then the terminals of the circuit are connected with the terminals of the display device. Subsequently, the substrate of the driver circuit is removed. This makes the configuration of the circuit much simpler than the configuration of the circuit heretofore required by the TAB method or COG method, because conducting lines are not laid in a complex manner. The driver circuit can be formed on a large-area substrate such as a glass substrate. The display device can be formed on a lightweight material having a high shock resistance such as a plastic substrate.
    Type: Application
    Filed: November 4, 2008
    Publication date: July 23, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura, Setsuo Nakajima, Yasuyuki Arai
  • Publication number: 20090061574
    Abstract: In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.
    Type: Application
    Filed: October 24, 2008
    Publication date: March 5, 2009
    Inventors: Setsuo Nakajima, Yasuyuki Arai
  • Publication number: 20090057683
    Abstract: In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.
    Type: Application
    Filed: October 24, 2008
    Publication date: March 5, 2009
    Inventors: Setsuo Nakajima, Yasuyuki Arai
  • Publication number: 20090033818
    Abstract: In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.
    Type: Application
    Filed: August 27, 2008
    Publication date: February 5, 2009
    Inventors: Setsuo Nakajima, Yasuyuki Arai
  • Patent number: 7485898
    Abstract: Subjected to obtain a crystalline TFT which simultaneously prevents increase of OFF current and deterioration of ON current. A gate electrode of a crystalline TFT is comprised of a first gate electrode and a second gate electrode formed in contact with the first gate electrode and a gate insulating film. LDD region is formed by using the first gate electrode as a mask, and a source region and a drain region are formed by using the second gate electrode as a mask. By removing a portion of the second gate electrode, a structure in which a region where LDD region and the second gate electrode overlap with a gate insulating film interposed therebetween, and a region where LDD region and the second gate electrode do not overlap, is obtained.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: February 3, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Setsuo Nakajima, Hisashi Ohtani, Shunpei Yamazaki
  • Patent number: 7483091
    Abstract: In a liquid crystal display device, a first substrate includes electrical wirings and a semiconductor integrated circuit which has TFTs and is connected electrically to the electrical wirings, and a second substrate includes a transparent conductive film on a surface thereof. A surface of the first substrate that the electrical wirings are formed is opposite to the transparent conductive film on the second substrate. the semiconductor integrated circuit has substantially the same length as one side of a display screen (i.e., a matrix circuit) of the display device and is obtained by peeling it from another substrate and then forming it on the first substrate. Also, in a liquid crystal display device, a first substrate includes a matrix circuit and a peripheral driver circuit, and a second substrate is opposite to the first substrate, includes a matrix circuit and a peripheral driver circuit and has at least a size corresponding to the matrix circuit and the peripheral driver circuit.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: January 27, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Yasuyuki Arai
  • Patent number: 7453088
    Abstract: A semiconductor device that uses a high reliability TFT structure is provided. The gate electrode of an n-channel type TFT is formed by a first gate electrode and a second gate electrode that covers the first gate electrode. LDD regions have portions that overlap the second gate electrode through a gate insulating film, and portions that do not overlap. As a result, the TFT can be prevented from degradation in an ON state, and it is possible to reduce the leak current in an OFF state.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: November 18, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Setsuo Nakajima
  • Patent number: 7446843
    Abstract: A method of fabricating a driver circuit for use with a passive matrix or active matrix electrooptical display device such as a liquid crystal display. The driver circuit occupies less space than heretofore. A circuit (stick crystal) having a length substantially equal to the length of one side of the matrix of the display device is used as the driver circuit. The circuit is bonded to one substrate of the display device, and then the terminals of the circuit are connected with the terminals of the display device. Subsequently, the substrate of the driver circuit is removed. This makes the configuration of the circuit much simpler than the configuration of the circuit heretofore required by the TAB method or COG method, because conducting lines are not laid in a complex manner. The driver circuit can be formed on a large-area substrate such as a glass substrate. The display device can be formed on a lightweight material having a high shock resistance such as a plastic substrate.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: November 4, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura, Setsuo Nakajima, Yasuyuki Arai
  • Publication number: 20080193342
    Abstract: To provide a plasma processing apparatus capable of enhancing insulation between an electrode and a casing and adjusting the temperature of the electrode from outside. An electrode 30 is provided at its discharge space forming surface with a solid dielectric 50. The electrode 30 is received in a casing 20 such that the solid dielectric 50 on the discharge space forming surface is exposed. An in-casing space 29 between the casing 20 and the electrode 30 disposed in the casing 20 is filled with substantially pure nitrogen gas. This nitrogen gas pressure is more increased than the pressure in the discharge space. Preferably, nitrogen gas is allowed to flow.
    Type: Application
    Filed: September 20, 2005
    Publication date: August 14, 2008
    Applicant: Sekisui Chemical Co., Ltd
    Inventors: Toshimasa Takeuchi, Setsuo Nakajima, Naomichi Saito, Osamu Nishikawa
  • Patent number: 7410847
    Abstract: There is provided a semiconductor device including a semiconductor circuit formed by semiconductor elements having an LDD structure which has high reproducibility, improves the stability of TFTs and provides high productivity and a method for manufacturing the same. In order to achieve the object, the design of a second mask is appropriately determined in accordance with requirements associated with the circuit configuration to make it possible to form a desired LDD region on both sides or one side of the channel formation region of a TFT.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: August 12, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Hideaki Kuwabara
  • Publication number: 20080188022
    Abstract: In a liquid crystal display device, a first substrate includes electrical wirings and a semiconductor integrated circuit which has TFTs and is connected electrically to the electrical wirings, and a second substrate includes a transparent conductive film on a surface thereof. A surface of the first substrate that the electrical wirings are formed is opposite to the transparent conductive film on the second substrate. the semiconductor integrated circuit has substantially the same length as one side of a display screen (i.e., a matrix circuit) of the display device and is obtained by peeling it from another substrate and then forming it on the first substrate. Also, in a liquid crystal display device, a first substrate includes a matrix circuit and a peripheral driver circuit, and a second substrate is opposite to the first substrate, includes a matrix circuit and a peripheral driver circuit and has at least a size corresponding to the matrix circuit and the peripheral driver circuit.
    Type: Application
    Filed: March 28, 2008
    Publication date: August 7, 2008
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Yasuyuki Arai
  • Publication number: 20080138963
    Abstract: After crystallization of a semiconductor film is performed by irradiating first laser light (energy density of 400 to 500 mJ/cm2) in an atmosphere containing oxygen, an oxide film formed by irradiating the first laser light is removed. It is next performed to irradiate second laser light under an atmosphere that does not contain oxygen (at a higher energy density than that of the first laser light irradiation), thus to increase the flatness of the semiconductor film.
    Type: Application
    Filed: November 6, 2007
    Publication date: June 12, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Hidekazu Miyairi
  • Publication number: 20080115892
    Abstract: To prevent occurrence of arcing caused by difference of thermal expansion between the electrode and the solid dielectric in a plasma processing apparatus. The bottom part of a casing 20 of processing units 10L, 10R is open, this opening part is closed with a solid dielectric plate 50, and an electrode 30 is received in the casing 20 such that the electrode 30 is free in the longitudinal direction. The solid dielectric plate 50 has such strength as capable of supporting the dead weight of the electrode 30 solely by itself. The electrode 30 is placed on the upper surface of the solid dielectric plate 50 is a non-fixed state such that the dead weight of the electrode 30 is almost totally applied to the solid dielectric plate 50.
    Type: Application
    Filed: September 20, 2005
    Publication date: May 22, 2008
    Applicant: Sekisui Chemcial Co., Ltd
    Inventors: Toshimasa Takeuchi, Setsuo Nakajima, Naomichi Saito, Osamu Nishikawa
  • Patent number: 7351617
    Abstract: To provide a technique required for purifying the interface between an active layer and an insulating film. On a substrate (101), a gate wiring (103) is formed and the surface thereof is covered with a gate oxide film (104). Then, a first insulating film (105a), a second insulating film (105b), a semiconductor film (106) and a protective film (107) are sequentially formed and layered without exposing them to the air. Further, the semiconductor film (106) is irradiated with laser light through the protective film (107). In this way, a TFT may be given good characteristics by completely purifying the interface of the semiconductor film.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: April 1, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Ritsuko Kawasaki