Patents by Inventor Seung-Hoon Sung

Seung-Hoon Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11233148
    Abstract: Integrated circuit transistor structures are disclosed that reduce band-to-band tunneling between the channel region and the source/drain region of the transistor, without adversely increasing the extrinsic resistance of the device. In an example embodiment, the structure includes one or more spacer configured to separate the source and/or drain from the channel region. The spacer(s) regions comprise a semiconductor material that provides a relatively high conduction band offset (CBO) and a relatively low valence band offset (VBO) for PMOS devices, and a relatively high VBO and a relatively low CBO for NMOS devices. In some cases, the spacer includes silicon, germanium, and carbon (e.g., for devices having germanium channel). The proportions may be at least 10% silicon by atomic percentage, at least 85% germanium by atomic percentage, and at least 1% carbon by atomic percentage. Other embodiments are implemented with III-V materials.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: January 25, 2022
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Jack T. Kavalieros, Seung Hoon Sung, Siddharth Chouksey, Harold W. Kennel, Dipanjan Basu, Ashish Agrawal, Glenn A. Glass, Tahir Ghani, Anand S. Murthy
  • Patent number: 11222977
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent shallow trench isolation (STI) regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, the structure includes an intervening diffusion barrier deposited between the n-MOS transistor and the STI region to provide dopant diffusion reduction. In some embodiments, the diffusion barrier may include silicon dioxide with carbon concentrations between 5 and 50% by atomic percentage. In some embodiments, the diffusion barrier may be deposited using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) techniques to achieve a diffusion barrier thickness in the range of 1 to 5 nanometers.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Publication number: 20210408239
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of semiconductor channels with a first end and second end. In an embodiment, individual ones of the semiconductor channels comprise a nitrided surface. In an embodiment, the semiconductor device further comprises a source region at the first end of the stack and a drain region at the second end of the stack. In an embodiment, a gate dielectric surrounds the semiconductor channels, and a gate electrode surrounding the gate dielectric.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Siddharth CHOUKSEY, Ashish AGRAWAL, Seung Hoon SUNG, Jack T. KAVALIEROS, Matthew V. METZ, Willy RACHMADY, Jessica TORRES, Martin M. MITAN
  • Publication number: 20210408018
    Abstract: An integrated circuit capacitor structure, includes a first electrode includes a cylindrical column, a ferroelectric layer around an exterior sidewall of the cylindrical column and a plurality of outer electrodes. The plurality of outer electrodes include a first outer electrode laterally adjacent to a first portion of an exterior of the ferroelectric layer and a second outer electrode laterally adjacent to a second portion of the exterior of the ferroelectric layer, wherein the second outer electrode is above the first outer electrode.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Sou-Chi Chang, Shriram Shivaraman, I-Cheng Tung, Tobias Brown-Heft, Devin R. Merrill, Che-Yun Lin, Seung Hoon Sung, Jack Kavalieros, Uygar Avci, Matthew V. Metz
  • Publication number: 20210407999
    Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Anh PHAN, Nicole K. THOMAS, Urusa ALAAN, Seung Hoon SUNG, Christopher M. NEUMANN, Willy RACHMADY, Patrick MORROW, Hui Jae YOO, Richard E. SCHENKER, Marko RADOSAVLJEVIC, Jack T. KAVALIEROS, Ehren MANNEBACH
  • Publication number: 20210398993
    Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gate stacks separate from FE capacitors of these cells. An example memory cell may be implemented as an IC device that includes a support structure (e.g., a substrate) and a transistor provided over the support structure and including a gate stack. The IC device also includes a FE capacitor having a first capacitor electrode, a second capacitor electrode, and a capacitor insulator of a FE material between the first capacitor electrode and the second capacitor electrode, where the FE capacitor is separate from the gate stack (i.e., is not integrated within the gate stack and does not have any layers that are part of the gate stack). The IC device further includes an interconnect structure, configured to electrically couple the gate stack and the first capacitor electrode.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Jack T. Kavalieros, Uygar E. Avci, Chia-Ching Lin, Seung Hoon Sung, Ashish Verma Penumatcha, Ian A. Young, Devin R. Merrill, Matthew V. Metz, I-Cheng Tung
  • Patent number: 11195924
    Abstract: An interlayer film is deposited on a device layer on a substrate. A contact layer is deposited on the interlayer film. The interlayer film has a broken bandgap alignment to the device layer to reduce a contact resistance of the contact layer to the device layer.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 7, 2021
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Van H. Le, Jack T. Kavalieros, Willy Rachmady, Matthew V. Metz, Ashish Agrawal, Seung Hoon Sung
  • Patent number: 11195944
    Abstract: Techniques are disclosed for gallium nitride (GaN) oxide isolation and formation of GaN transistor structures on a substrate. In some cases, the GaN transistor structures can be used for system-on-chip integration of high-voltage GaN front-end radio frequency (RF) switches on a bulk silicon substrate. The techniques can include, for example, forming multiple fins in a substrate, depositing the GaN layer on the fins, oxidizing at least a portion of each fin in a gap below the GaN layer, and forming one or more transistors on and/or from the GaN layer. In some cases, the GaN layer is a plurality of GaN islands, each island corresponding to a given fin. The techniques can be used to form various non-planar isolated GaN transistor architectures having a relatively small form factor, low on-state resistance, and low off-state leakage, in some cases.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 7, 2021
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Sanaz K. Gardner, Marko Radosavljevic, Seung Hoon Sung, Robert S. Chau
  • Patent number: 11189730
    Abstract: Integrated circuit transistor structures and processes are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent channel regions during fabrication. The n-MOS transistor device may include at least 70% germanium (Ge) by atomic percentage. In an example embodiment, source and drain regions of the transistor are formed using a low temperature, non-selective deposition process of n-type doped material. In some embodiments, the low temperature deposition process is performed in the range of 450 to 600 degrees C. The resulting structure includes a layer of doped mono-crystyalline silicon (Si), or silicon germanium (SiGe), on the source/drain regions. The structure also includes a layer of doped amorphous Si:P (or SiGe:P) on the surfaces of a shallow trench isolation (STI) region and the surfaces of contact trench sidewalls.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: November 30, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Patent number: 11177376
    Abstract: III-N semiconductor heterostructures on III-N epitaxial islands laterally overgrown from a mesa of a silicon substrate. An IC may include a III-N semiconductor device disposed on the III-N epitaxial island overhanging the silicon mesa and may further include a silicon-based MOSFET monolithically integrated with the III-N device. Lateral epitaxial overgrowth from silicon mesas may provide III-N semiconductor regions of good crystal quality upon which transistors or other active semiconductor devices may be fabricated. Overhanging surfaces of III-N islands may provide multiple device layers on surfaces of differing polarity. Spacing between separate III-N islands may provide mechanical compliance to an IC including III-N semiconductor devices. Undercut of the silicon mesa may be utilized for transfer of III-N epitaxial islands to alternative substrates.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Sanaz K. Gardner, Marko Radosavljevic, Seung Hoon Sung, Benjamin Chu-Kung, Robert S. Chau
  • Patent number: 11171243
    Abstract: Transistor structures may include a metal oxide contact buffer between a portion of a channel material and source or drain contact metallization. The contact buffer may improve control of transistor channel length by limiting reaction between contact metallization and the channel material. The channel material may be of a first composition and the contact buffer may be of a second composition.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 9, 2021
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Abhishek Sharma, Van Le, Jack Kavalieros, Shriram Shivaraman, Seung Hoon Sung, Tahir Ghani, Arnab Sen Gupta, Nazila Haratipour, Justin Weber
  • Patent number: 11152290
    Abstract: A subfin layer is deposited on a substrate. A fin layer is deposited on the subfin layer. The subfin layer has a conduction band energy offset relative to the fin layer to prevent a leakage in the subfin layer. In one embodiment, the subfin layer comprises a group IV semiconductor material layer that has a bandgap greater than a bandgap of the fin layer.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: October 19, 2021
    Assignee: Intel Corporatuon
    Inventors: Benjamin Chu-Kung, Van H. Le, Willy Rachmady, Matthew V. Metz, Jack T. Kavalieros, Ashish Agrawal, Seung Hoon Sung
  • Patent number: 11145763
    Abstract: An embodiment includes a system comprising: a thin film transistor (TFT) comprising a source, a channel, a drain, and a gate; first, second, and third dielectric portions; wherein (a) a first vertical axis intersects the source, the channel, and the drain; (b) the first dielectric portion surrounds the source in a first plane; (c) the second dielectric portion surrounds the channel in a second plane; (d) the third dielectric surrounds the drain in a third plane; (e) a second vertical axis intersects the first, second, and third dielectric portions; (f) the source includes a first dopant, the first dielectric portion includes the first dopant, the second dielectric portion includes at least one of the first dopant and a second dopant, the drain includes the at least one of the first and second dopants, and the third dielectric portion includes the at least one of the first and second dopants.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 12, 2021
    Assignee: INTEL CORPORATION
    Inventors: Ravi Pillarisetty, Prashant Majhi, Seung Hoon Sung, Willy Rachmady, Gilbert Dewey, Abhishek A. Sharma, Brian S. Doyle, Jack T. Kavalieros
  • Publication number: 20210305398
    Abstract: A capacitor device includes a first electrode having a first metal alloy or a metal oxide, a relaxor ferroelectric layer adjacent to the first electrode, where the ferroelectric layer includes oxygen and two or more of lead, barium, manganese, zirconium, titanium, iron, bismuth, strontium, neodymium, potassium, or niobium and a second electrode coupled with the relaxor ferroelectric layer, where the second electrode includes a second metal alloy or a second metal oxide.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Nazila Haratipour, Tanay Gosavi, I-Cheng Tung, Seung Hoon Sung, Ian Young, Jack Kavalieros, Uygar Avci, Ashish Verma Penumatcha
  • Patent number: 11121030
    Abstract: Techniques are disclosed for forming transistors employing a carbon-based etch stop layer (ESL) for preserving source and drain (S/D) material during contact trench etch processing. As can be understood based on this disclosure, carbon-based layers can provide increased resistance for etch processing, such that employing a carbon-based ESL on S/D material can preserve that S/D material during contact trench etch processing. This is due to carbon-based layers being able to provide more robust (e.g., more selective) etch selectivity during contact trench etch processing than the S/D material it is preserving (e.g., Si, SiGe, Ge, group III-V semiconductor material) and other etch stop layers (e.g., insulator material-based etch stop layers). Employing a carbon-based ESL enables a given S/D region to protrude from shallow trench isolation (STI) material prior to contact metal deposition, thereby providing more surface area for making contact to the given S/D region, which improves transistor performance.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 14, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Benjamin Chu-Kung, Seung Hoon Sung, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11114556
    Abstract: A gate stack structure is disclosed for inhibiting charge leakage in III-V transistor devices. The techniques are particularly well-suited for use in enhancement-mode MOSHEMTs but can also be used in other transistor designs susceptible to charge spillover and unintended channel formation in the gate stack. In an example embodiment, the techniques are realized in a transistor having a III-N gate stack over a gallium nitride (GaN) channel layer. The gate stack is configured with a relatively thick barrier structure and wide bandgap III-N materials to prevent or otherwise reduce channel charge spillover resulting from tunneling or thermionic processes at high gate voltages. The barrier structure is configured to manage lattice mismatch conditions, so as to provide a robust high-performance transistor design. In some cases, the gate stack is used in conjunction with an access region polarization layer to induce two-dimensional electron gas (2DEG) in the channel layer.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: September 7, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung
  • Patent number: 11101356
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent insulator regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, a dopant-rich insulator cap is deposited adjacent to the source and/or drain regions, to provide dopant diffusion reduction. In some embodiments, the dopant-rich insulator cap is doped with an n-type impurity including Phosphorous in a concentration between 1 and 10% by atomic percentage. In some embodiments, the dopant-rich insulator cap may have a thickness in the range of 10 to 100 nanometers and a height in the range of 10 to 200 nanometers.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Patent number: 11101350
    Abstract: Techniques are disclosed for forming germanium (Ge)-rich channel transistors including one or more dopant diffusion barrier elements. The introduction of one or more dopant diffusion elements into at least a portion of a given source/drain (S/D) region helps inhibit the undesired diffusion of dopant (e.g., B, P, or As) into the adjacent Ge-rich channel region. In some embodiments, the elements that may be included in a given S/D region to help prevent the undesired dopant diffusion include at least one of tin and relatively high silicon. Further, in some such embodiments, carbon may also be included to help prevent the undesired dopant diffusion. In some embodiments, the one or more dopant diffusion barrier elements may be included in an interfacial layer between a given S/D region and the Ge-rich channel region and/or throughout at least a majority of a given S/D region. Numerous embodiments, configurations, and variations will be apparent.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Benjamin Chu-Kung, Seung Hoon Sung, Jack T. Kavalieros, Tahir Ghani, Harold W. Kennel
  • Publication number: 20210257457
    Abstract: A nanowire device of the present description may be produced with the incorporation of at least one hardmask during the fabrication of at least one nanowire transistor in order to assist in protecting an uppermost channel nanowire from damage that may result from fabrication processes, such as those used in a replacement metal gate process and/or the nanowire release process. The use of at least one hardmask may result in a substantially damage free uppermost channel nanowire in a multi-stacked nanowire transistor, which may improve the uniformity of the channel nanowires and the reliability of the overall multi-stacked nanowire transistor.
    Type: Application
    Filed: April 12, 2021
    Publication date: August 19, 2021
    Inventors: Seung Hoon Sung, Seiyon Kim, Kelin J. Kuhn, Willy Rachmady, Jack T. Kavalieros
  • Patent number: 11094716
    Abstract: An apparatus is provided which comprises: a source and a drain with a semiconductor body therebetween, the source, the drain, and the semiconductor body on an insulator, a buried structure between the semiconductor body and the insulator, and a source contact coupled with the source and the buried structure, the source contact comprising metal. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Dipanjan Basu, Rishabh Mehandru, Seung Hoon Sung