Patents by Inventor Seyed Gholamali Saddoughi

Seyed Gholamali Saddoughi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10393103
    Abstract: A compressor includes a plurality of synthetic jet assemblies. Each synthetic jet assembly of the plurality of synthetic jet assemblies is in fluid communication with at least one other synthetic jet assembly of the plurality of synthetic jet assemblies. Each synthetic jet assembly of the plurality of synthetic jet assemblies includes a first side plate and a second side plate. The first side plate includes a first bimorph piezoelectric structure. The second side plate includes a second bimorph piezoelectric structure. The first side plate and the second side plate define a first fluid cavity extending between the first side plate and the second side plate.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: August 27, 2019
    Assignee: General Electric Company
    Inventors: Grover Andrew Bennett, Jr., Matthew Patrick Boespflug, Seyed Gholamali Saddoughi
  • Patent number: 10240579
    Abstract: A virtual aerodynamic component for a wind turbine including at least one rotor blade connected to a hub. The at least one rotor blade defines an inner portion and a profiled outer portion. The virtual aerodynamic component includes one or more air-blowing units configured to provide a flow of air substantially opposed to an incoming wind. The flow of air defines the virtual aerodynamic component in front of the inner portion of the at least one rotor blade and provides for redirection of the incoming wind toward the profiled outer portion of the at least one rotor blade in an operational state and allows the incoming wind to flow toward the inner portion of the at least one rotor blade in a non-operational state. Further described is a wind turbine including the above-described virtual aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 26, 2019
    Assignee: General Electric Company
    Inventors: Seyed Gholamali Saddoughi, Matthew Patrick Boespflug, Michael Solomon Idelchik, Grover Andrew Bennett
  • Patent number: 10132290
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: November 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dmitry Floryovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Fulton Jose Lopez, Daniel Jason Erno, Robert Michael Zirin, Anurag Gupta
  • Publication number: 20180100494
    Abstract: A compressor includes a plurality of synthetic jet assemblies. Each synthetic jet assembly of the plurality of synthetic jet assemblies is in fluid communication with at least one other synthetic jet assembly of the plurality of synthetic jet assemblies. Each synthetic jet assembly of the plurality of synthetic jet assemblies includes a first side plate and a second side plate. The first side plate includes a first bimorph piezoelectric structure. The second side plate includes a second bimorph piezoelectric structure. The first side plate and the second side plate define a first fluid cavity extending between the first side plate and the second side plate.
    Type: Application
    Filed: October 10, 2016
    Publication date: April 12, 2018
    Inventors: Grover Andrew Bennett, JR., Matthew Patrick Boespflug, Seyed Gholamali Saddoughi
  • Publication number: 20170211545
    Abstract: A virtual aerodynamic component for a wind turbine including at least one rotor blade connected to a hub. The at least one rotor blade defines an inner portion and a profiled outer portion. The virtual aerodynamic component includes one or more air-blowing units configured to provide a flow of air substantially opposed to an incoming wind. The flow of air defines the virtual aerodynamic component in front of the inner portion of the at least one rotor blade and provides for redirection of the incoming wind toward the profiled outer portion of the at least one rotor blade in an operational state and allows the incoming wind to flow toward the inner portion of the at least one rotor blade in a non-operational state. Further described is a wind turbine including the above-described virtual aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 27, 2017
    Inventors: Seyed Gholamali Saddoughi, Matthew Patrick Boespflug, Michael Solomon Idelchik, Grover Andrew Bennett
  • Patent number: 9408287
    Abstract: A plasma actuator system includes a first electrode having a first slit formed in a first peripheral section of the first electrode. The first slit directs flow of a gaseous medium along a radial direction of the first electrode. Further, the plasma actuator system includes a second electrode coupled to the first electrode and is disposed concentrically around the first electrode. The second electrode includes a second slit formed in a second peripheral section for directing flow of the gaseous medium along the radial direction. Further, the system includes a power source coupled to the first and second electrode for supplying electric power to the electrodes for ionizing gaseous medium to generate plasma.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: August 2, 2016
    Assignee: General Electric Company
    Inventors: Dmytro Floriyovych Opaits, Seyed Gholamali Saddoughi
  • Publication number: 20160040650
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Dmitry Floryovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Fulton Jose Lopez, Daniel Jason Erno, Robert Michael Zirin, Anurag Gupta
  • Patent number: 9239039
    Abstract: Active Circulation Control (ACC) of aerodynamic structures, such as a turbine blade, uses unsteady or oscillatory flow from either synthetic jets or pulsed jets to modify a velocity profile of the blade. The blade includes an opening disposed in a surface of the blade at a location proximate to a trailing edge, a leading edge, or both the trailing edge and the leading edge of the blade. An active flow control device in fluid communication with the opening produces a wall-jet of pulsed fluid that flows over the trailing edge, the leading edge, or both the trailing and leading edges of the blade and modify the velocity profile of the blade.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 19, 2016
    Assignee: General Electric Company
    Inventors: Stefan Herr, Anurag Gupta, Seyed Gholamali Saddoughi
  • Patent number: 9194363
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 24, 2015
    Assignee: General Electric Company
    Inventors: Dmytro Floriyovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Jr., Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Anurag Gupta
  • Patent number: 9162754
    Abstract: A method for actively manipulating a primary fluid flow over a surface using an active flow control system including an active fluid flow device to provide lift enhancement and lift destruction. The method including the disposing of an active fluid flow device in the surface. The active fluid flow device is then operated to generate at least one of a steady blowing secondary fluid flow, a pulsed secondary fluid flow or an oscillating secondary fluid flow. While flowing the primary fluid over the surface to create a primary flow field, a secondary fluid flow is injected in an upstream direction and substantially opposed to the incoming primary fluid flow. The injecting of the secondary fluid flow in this manner provides for influencing of the primary flow field by manipulating a momentum of the secondary fluid flow to influence the incoming primary fluid flow and resultant lift.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 20, 2015
    Assignee: General Electric Company
    Inventors: Matthew Patrick Boespflug, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Jr., Dmytro Floriyovych Opaits
  • Patent number: 8991189
    Abstract: A gas turbine engine augmentor includes at least one fluid based augmentor initiator defining a chamber in flow communication with a source of air and a source of fuel. The chamber includes a plurality of ejection openings in flow communication with an exhaust flowpath. The at least one fluid based augmentor initiator is devoid of any exhaust flowpath protrusions thereby minimizing any pressure drops and loss of thrust during dry work phase of operation. The source of fuel is operable for injecting fuel into the chamber such that at least a portion of the fuel flow is ignited at the plurality of ejection openings to produce a plurality of fuel-rich hot jets radially into the exhaust flowpath.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Narendra Digamber Joshi, Adam Rasheed, Matthew Patrick Boespflug, Seyed Gholamali Saddoughi
  • Patent number: 8847631
    Abstract: A gate drive circuit includes an insulated gate semiconductor switch. A controlled current source is connected to the semiconductor switch gate terminal to provide a gate drive circuit that is responsive to recycled gate charge corresponding to an internal gate capacitance of the insulated gate semiconductor switch.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: September 30, 2014
    Assignee: General Electric Company
    Inventors: Fengfeng Tao, Seyed Gholamali Saddoughi, John Thomas Herbon
  • Publication number: 20140147290
    Abstract: A plasma actuator system includes a first electrode having a first slit formed in a first peripheral section of the first electrode. The first slit directs flow of a gaseous medium along a radial direction of the first electrode. Further, the plasma actuator system includes a second electrode coupled to the first electrode and is disposed concentrically around the first electrode. The second electrode includes a second slit formed in a second peripheral section for directing flow of the gaseous medium along the radial direction. Further, the system includes a power source coupled to the first and second electrode for supplying electric power to the electrodes for ionizing gaseous medium to generate plasma.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dmytro Floriyovych Opaits, Seyed Gholamali Saddoughi
  • Patent number: 8671659
    Abstract: A system and a method of generating energy in a power plant using a turbine are provided. The system includes an air separation unit providing an oxygen output; a plasma generator that is capable of generating plasma; and a combustor configured to receive oxygen and to combust a fuel stream in the presence of the plasma, so as to maintain a stable flame, generating an exhaust gas. The system can further include a water condensation system, fluidly-coupled to the combustor, that is capable of producing a high-content carbon dioxide stream that is substantially free of oxygen. The method of generating energy in a power plant includes the steps of operating an air separation unit to separate oxygen from air, combusting a fuel stream in a combustor in the presence of oxygen, and generating an exhaust gas from the combustion. The exhaust gas can be used in a turbine to generate electricity. A plasma is generated inside the combustor, and a stable flame is maintained in the combustor.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Ahmed Mostafa ELKady, Uyigue Omoma Idahosa, Matthew Patrick Boespflug, Grover Andrew Bennett, John Thomas Herbon, Hasan Karim, Geoffrey David Myers, Seyed Gholamali Saddoughi
  • Patent number: 8649188
    Abstract: A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Fengfeng Tao, Seyed Gholamali Saddoughi, John Thomas Herbon
  • Publication number: 20140003940
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dmytro Floriyovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, JR., Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Anurag Gupta
  • Publication number: 20130284273
    Abstract: A method for actively manipulating a primary fluid flow over a surface using an active flow control system including an active fluid flow device to provide lift enhancement and lift destruction. The method including the disposing of an active fluid flow device in the surface. The active fluid flow device is then operated to generate at least one of a steady blowing secondary fluid flow, a pulsed secondary fluid flow or an oscillating secondary fluid flow. While flowing the primary fluid over the surface to create a primary flow field, a secondary fluid flow is injected in an upstream direction and substantially opposed to the incoming primary fluid flow. The injecting of the secondary fluid flow in this manner provides for influencing of the primary flow field by manipulating a momentum of the secondary fluid flow to influence the incoming primary fluid flow and resultant lift.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Patrick Boespflug, Seyed Gholamali Saddoughi, Grover Andrew Bennett, JR., Dmytro Floriyovych Opaits
  • Publication number: 20130192243
    Abstract: A fuel nozzle assembly for use with a turbine engine includes at least one fuel conduit coupled to at least one fuel source. The fuel nozzle assembly also includes at least one swirler that includes at least one wall having a porous portion. The at least one wall is coupled to the at least one fuel conduit. The porous portion is formed from a material having a porosity that facilitates fuel flow therethrough. At least one fuel flow path is thereby defined through the porous portion of the at least one wall.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Inventors: Matthew Patrick Boespflug, Seyed Gholamali Saddoughi, Grover Andrew Bennett, JR., John Thomas Herbon
  • Publication number: 20130180245
    Abstract: A gas turbine is provided, including a turbine, an exhaust diffuser, and a plasma actuator. The turbine releases an exhaust gas. The exhaust diffuser receives the exhaust gas from the turbine. The exhaust diffuser has an inlet and an outlet, and at least one wall that is disposed between the inlet and the outlet. The plasma actuator produces a plasma along the at least one wall of the diffuser.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Seyed Gholamali Saddoughi, Deepesh Dinesh Nanda, Antanu Sadhu
  • Publication number: 20130162322
    Abstract: A gate drive circuit includes an insulated gate semiconductor switch. A controlled current source is connected to the semiconductor switch gate terminal to provide a gate drive circuit that is responsive to recycled gate charge corresponding to an internal gate capacitance of the insulated gate semiconductor switch.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Fengfeng Tao, Seyed Gholamali Saddoughi, John Thomas Herbon