Patents by Inventor Shang-Chieh Chien

Shang-Chieh Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220413401
    Abstract: Some implementations described herein provide a reticle cleaning device and a method of use. The reticle cleaning device includes a support member configured for extension toward a reticle within an extreme ultraviolet lithography tool. The reticle cleaning device also includes a contact surface disposed at an end of the support member and configured to bond to particles contacted by the contact surface. The reticle cleaning device further includes a stress sensor configured to measure an amount of stress applied to the support member at the contact surface. During a cleaning operation in which the contact surface is moving toward the reticle, the stress sensor may provide an indication that the amount of stress applied to the support member satisfies a threshold. Based on satisfying the threshold, movement of the contact surface and/or the support member toward the reticle ceases to avoid damaging the reticle.
    Type: Application
    Filed: March 22, 2022
    Publication date: December 29, 2022
    Inventors: Che-Chang HSU, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220413399
    Abstract: A coating is included on one or more components of a lithography system. The coating reduces surface roughness of the one or more surfaces, increases flatness of the one or more surfaces, and/or increases uniformity of the one or more surfaces. The coating may be formed on the one or more surfaces using one or more of the techniques described herein. The coating is configured to reduce adhesion of target material particles to the one or more surfaces, is configured to resist buildup of target material particles on the one or more surfaces, is configured to provide resistance against oxidation of the one or more surfaces, is configured to resist thermal damage of the one or more surfaces, and/or is configured to enable the lithography system to operate at higher operating temperatures, among other examples.
    Type: Application
    Filed: April 14, 2022
    Publication date: December 29, 2022
    Inventors: Shih-Yu TU, Chieh HSIEH, Shang-Chieh CHIEN, Sheng-Kang YU, Li-Jui CHEN, Heng-Hsin LIU
  • Patent number: 11537053
    Abstract: Some implementations herein include a detection circuit and a fast and accurate in-line method for detecting blockage on a droplet generator head of an extreme ultraviolet exposure tool without impacting the flow of droplets of a target material through the droplet generator head. In some implementations described herein, the detection circuit includes a switch circuit that is configured in an open configuration, in which the switch is electrically open between two electrode elements. When an accumulation of the target material occurs across two or more electrode elements on the droplet generator head, the accumulation functions as a switch that closes the detection circuit. A controller may detect closure of the detection circuit.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: December 27, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chiao-Hua Cheng, Yu-Kuang Sun, Wei-Shin Cheng, Yu-Huan Chen, Ming-Hsun Tsai, Cheng-Hao Lai, Cheng-Hsuan Wu, Yu-Fa Lo, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen, Sheng-Kang Yu
  • Publication number: 20220404716
    Abstract: A wafer table inspection tool described herein is capable of being positioned over a wafer table while the wafer table is positioned in a bottom module of an exposure tool of a lithography system. The wafer table inspection tool is capable of quickly evaluating the condition of surface burls on the wafer table and evaluating cleaning performance of a cleaning operation in which the surface burls are cleaned.
    Type: Application
    Filed: April 15, 2022
    Publication date: December 22, 2022
    Inventors: Ming-Hsun TSAI, Cheng-Hao LAI, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220408537
    Abstract: An EUV light source module includes an EUV vessel, a collector disposed in the EUV vessel, a droplet generator, a droplet catcher, and a droplet collecting system. The droplet generator is coupled to the EUV vessel and configured to provide a plurality of target droplets into the EUV vessel. The droplet catcher is coupled to the EUV vessel and configured to catch at least a target droplet from the EUV vessel. The droplet colleting system is coupled to the droplet catcher. The droplet collecting system includes a connecting port coupled to the droplet catcher, and a thermal insulating device surrounding the droplet catcher. The droplet generator and the droplet catcher are disposed at opposite locations in the EUV vessel.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Inventors: Yu-Fa LO, Ming-Hsun TSAI, Shang-Chieh CHIEN
  • Publication number: 20220408538
    Abstract: Some implementations described herein provide techniques and apparatuses for inspecting interior surfaces of a vessel of a radiation source for an accumulation of a target material. An inspection tool, including a laser-scanning system and a motor system supported by an elongated supported member, may be inserted into the vessel to generate an accurate three-dimensional profile of the interior surfaces. Use of the inspection tool is efficient, with short setup and scan times that substantially reduce a duration associated with evaluating the interior surfaces of the vessel for the accumulation.
    Type: Application
    Filed: April 11, 2022
    Publication date: December 22, 2022
    Inventors: Jou-Hsuan LU, Chiao-Hua CHENG, Cheng-Hsuan WU, Ko-Ching HOU, Jyun-Yan CHUANG, Cheng-Hao LAI, Yu-Kuang SUN, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220404722
    Abstract: A plurality of hydrogen outlets are arrayed along a direction normal to a surface (such as a surface of a collector) of an extreme ultraviolet lithography (EUV) tool to increase a volume of hydrogen gas surrounding the surface. As a result, airborne tin is more likely to be stopped by the hydrogen gas surrounding the surface and less likely to bind to the surface. Fewer tin deposits results in increased lifetime for the surface, which reduces downtime for the EUV tool. Additionally, a control device may receive (e.g., from a camera and/or another type of sensor) an indication of levels of tin contamination on the surface and control flow rates to adjust a thickness of the hydrogen curtain. As a result, tin contamination on the collector is less likely to occur and will be more efficiently cleaned by the hydrogen gas, which results in increased lifetime for the surface and reduced downtime for the EUV tool.
    Type: Application
    Filed: February 23, 2022
    Publication date: December 22, 2022
    Inventors: Tzu-Jung PAN, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Patent number: 11531278
    Abstract: Extreme ultraviolet (EUV) lithography systems are provided. A EUV scanner is configured to perform a lithography exposure process in response to EUV radiation. A light source is configured to provide the EUV radiation to the EUV scanner. A measuring device is configured to measure concentration of debris caused by unstable target droplets in the chamber. A controller is configured to adjust a first gas flow rate and a second gas flow rate in response to the measured concentration of the debris and a control signal from the EUV scanner. A exhaust device is configured to extract the debris out of the chamber according to the first gas flow rate. A gas supply device is configured to provide a gas into the chamber according to the second gas flow rate. The control signal indicates the lithography exposure process is completed.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi Yang, Ssu-Yu Chen, Shang-Chieh Chien, Chieh Hsieh, Tzung-Chi Fu, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng
  • Patent number: 11533799
    Abstract: A system and a method for supplying target material in an EUV light source are provided. The system for supplying a target material comprises a priming assembly, a refill assembly and a droplet generator assembly. The priming is configured to transform the target material from a solid state to a liquid state. The refill assembly is in fluid communication with the priming assembly and configured to receive the target material in the liquid state from the priming assembly. Further, the refill assembly includes a purifier configured to purify the target material in the liquid state. The droplet generator assembly is configured to supply the target material in the liquid state from the refill assembly.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsin-Feng Chen, Ming-Hsun Tsai, Li-Jui Chen, Shang-Chieh Chien, Heng-Hsin Liu, Cheng-Hao Lai, Yu-Huan Chen, Wei-Shin Cheng, Yu-Kuang Sun, Cheng-Hsuan Wu, Yu-Fa Lo, Chiao-Hua Cheng
  • Patent number: 11528797
    Abstract: An extreme ultraviolet (EUV) photolithography system generates EUV light by irradiating droplets with a laser. The system includes a droplet generator with a nozzle and a piezoelectric structure coupled to the nozzle. The generator outputs groups of droplets. A control system applies a voltage waveform to the piezoelectric structure while the nozzle outputs the group of droplets. The waveform causes the droplets of the group to have a spread of velocities that results in the droplets coalescing into a single droplet prior to being irradiated by the laser.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuang Sun, Cheng-Hao Lai, Yu-Huan Chen, Wei-Shin Cheng, Ming-Hsun Tsai, Hsin-Feng Chen, Chiao-Hua Cheng, Cheng-Hsuan Wu, Yu-Fa Lo, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20220382048
    Abstract: An EUV collector mirror for an extreme ultra violet (EUV) radiation source apparatus includes an EUV collector mirror body on which a reflective layer as a reflective surface is disposed, a heater attached to or embedded in the EUV collector mirror body and a drain structure to drain melted metal from the reflective surface of the EUV collector mirror body to a back side of the EUV collector mirror body.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Yu-Chih CHEN, Po-Chung CHENG, Li-Jui CHEN, Shang-Chieh CHIEN, Sheng-Kang YU, Wei-Chun YEN
  • Patent number: 11513441
    Abstract: An EUV collector mirror for an extreme ultra violet (EUV) radiation source apparatus includes an EUV collector mirror body on which a reflective layer as a reflective surface is disposed, a heater attached to or embedded in the EUV collector mirror body and a drain structure to drain melted metal from the reflective surface of the EUV collector mirror body to a back side of the EUV collector mirror body.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: November 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chih Chen, Po-Chung Cheng, Li-Jui Chen, Shang-Chieh Chien, Sheng-Kang Yu, Wei-Chun Yen
  • Publication number: 20220365442
    Abstract: Some implementations herein include a detection circuit and a fast and accurate in-line method for detecting blockage on a droplet generator head of an extreme ultraviolet exposure tool without impacting the flow of droplets of a target material through the droplet generator head. In some implementations described herein, the detection circuit includes a switch circuit that is configured in an open configuration, in which the switch is electrically open between two electrode elements. When an accumulation of the target material occurs across two or more electrode elements on the droplet generator head, the accumulation functions as a switch that closes the detection circuit. A controller may detect closure of the detection circuit.
    Type: Application
    Filed: October 6, 2021
    Publication date: November 17, 2022
    Inventors: Chiao-Hua CHENG, Yu-Kuang SUN, Wei-Shin CHENG, Yu-Huan CHEN, Ming-Hsun TSAI, Cheng-Hao LAI, Cheng-Hsuan WU, Yu-Fa LO, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN, Sheng-Kang YU
  • Publication number: 20220359097
    Abstract: A radiation source apparatus includes a vessel, a laser source, a collector, and a reflective mirror. The vessel has an exit aperture. The laser source is at one end of the vessel and configured to excite a target material to form a plasma. The collector is disposed in the vessel and configured to collect a radiation emitted by the plasma and to direct the collected radiation to the exit aperture of the vessel. The reflective mirror is in the vessel and configured to reflect the laser beam toward an edge of the vessel.
    Type: Application
    Filed: August 20, 2021
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Chung TU, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220350257
    Abstract: A photolithography system utilizes tin droplets to generate extreme ultraviolet radiation for photolithography. The photolithography system irradiates the droplets with a laser. The droplets become a plasma and emit extreme ultraviolet radiation. The photolithography system senses contamination of a collector mirror by the tin droplets and adjusts the flow of a buffer fluid to reduce the contamination.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Tai-Yu CHEN, Sagar Deepak KHIVSARA, Kuo-An LIU, Chieh HSIEH, Shang-Chieh CHIEN, Gwan-Sin CHANG, Kai Tak LAM, Li-Jui CHEN, Heng-Hsin LIU, Chung-Wei WU, Zhiqiang WU
  • Publication number: 20220350266
    Abstract: Microwave heating of debris collecting vanes within the source vessel of a lithography apparatus is used to accomplish uniform temperature distribution in order to reduce fall-on contamination and formation of clogs on the inner and outer surfaces of the vanes.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 3, 2022
    Inventors: Cheng Hung TSAI, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20220350263
    Abstract: A method includes moving a wafer stage to a first station on a table body of a lithography chamber; placing a wafer on a top surface of the wafer stage; emitting a first laser beam from a first laser emitter toward a first beam splitter on a first sidewall of the wafer stage, wherein a first portion of the first laser beam is reflected by the first beam splitter to form a first reflected laser beam, and a second portion of the first laser beam transmits through the first beam splitter to form a first transmitted laser beam; calculating a position of the wafer stage on a first axis based on the first reflected laser beam; after calculating the position of the wafer, moving the wafer stage to a second station on the table body; and performing a lithography process to the wafer.
    Type: Application
    Filed: September 7, 2021
    Publication date: November 3, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Huan CHEN, Yu-Chih HUANG, Ya-An PENG, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220342323
    Abstract: A method includes irradiating debris deposited in an extreme ultraviolet (EUV) lithography system with laser, controlling one or more of a wavelength of the laser or power of the laser to selectively vaporize the debris and limit damage to the EUV) lithography system, and removing the vaporized debris.
    Type: Application
    Filed: December 10, 2021
    Publication date: October 27, 2022
    Inventors: Chun-Han LIN, Chieh HSIEH, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Patent number: 11483918
    Abstract: A method for generating light is provided. The method further includes measuring a period of time during which one of targets from a fuel target generator passes through two detection positions. The method also includes exciting the targets with a laser generator so as to generate plasma that emits light. In addition, the operation of exciting the targets with the laser generator includes: irradiating a pre-pulse laser on the targets to expand the targets; detecting conditions of expanded targets; and adjusting at least one parameter of the laser generator according to the measured period of time and the conditions when the measured period of time is different from a predetermined value. The parameter of the laser generator which is adjusted according to the measured period of time includes a frequency for generating a laser for illuminating the targets.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chieh Hsieh, Shang-Chieh Chien, Chun-Chia Hsu, Bo-Tsun Liu, Tzung-Chi Fu, Li-Jui Chen, Po-Chung Cheng
  • Publication number: 20220338334
    Abstract: An extreme ultraviolet (EUV) photolithography system generates EUV light by irradiating droplets with a laser. The system includes a droplet generator with a nozzle and a piezoelectric structure coupled to the nozzle. The generator outputs groups of droplets. A control system applies a voltage waveform to the piezoelectric structure while the nozzle outputs the group of droplets. The waveform causes the droplets of the group to have a spread of velocities that results in the droplets coalescing into a single droplet prior to being irradiated by the laser.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Yu-Kuang SUN, Cheng-Hao LAI, Yu-Huan CHEN, Wei-Shin CHENG, Ming-Hsun TSAI, Hsin-Feng CHEN, Chiao-Hua CHENG, Cheng-Hsuan WU, Yu-Fa LO, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU