Patents by Inventor Shanger Wang

Shanger Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11112377
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: September 7, 2021
    Assignee: DexCom, Inc.
    Inventors: Shanger Wang, Ted Tang Lee, Jiong Zou
  • Patent number: 11058329
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 13, 2021
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Patent number: 10932709
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 2, 2021
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 10827955
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20200330006
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20200205705
    Abstract: Various examples described herein are directed to systems, apparatuses, and methods for mitigating break-in in an analyte sensor. An example analyte sensor system comprises an analyte sensor applicator comprising a needle; an analyte sensor comprising at least a working electrode and a reference electrode, the analyte sensor positioned at least partially within a lumen of the needle; and a hydrating agent positioned within the lumen of the needle to at least partially hydrate the needle.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Ted Tang Lee, Anna Leigh Davis, Peter C. Simpson, Liang Wang, Shanger Wang, Jiong Zou, Stephen J. Vanslyke, Rui Ma, Wenjie Lan
  • Publication number: 20180199873
    Abstract: Flexible analyte sensors are provided. Flexible analyte sensors may be flexible continuous analyte sensors that facilitate continuous monitoring of an analyte such as blood glucose. The flexible analyte sensor may have a relatively flexible conductive or non-conductive core, may be formed from a plurality of substantially planar layers, or may be configured to transform from a freestanding sensor ex vivo to a non-freestanding sensor in vivo.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 19, 2018
    Inventors: Shanger Wang, Devon M. Headen, Sebastian Bohm, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Jiong Zou
  • Publication number: 20180116570
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20180116572
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20180042529
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20180015120
    Abstract: Polymers having the formula R(LE)x wherein R is a polymeric core having a number average molecular weight of from 5000 to 7,000,000 daltons and having x endgroups, E is an endgroup covalently linked to polymeric core R by linkage L, L is a divalent oligomeric chain, having at least 5 identical repeat units, capable of self-assembly with L chains on adjacent molecules of the polymer, and the moieties (LE)x in the polymer may be the same as or different from one another. Design of monomers, oligomers, or other reactive structures otherwise analogous to known Self Assembled Monolayers but with at least one reactive chemical group capable of binding them to the terminus of a polymer, so that the thiol-free SAM analogue becomes the self-assembling surface modifying endgroup of that polymer. Use of the polymer to fabricate a configured article from the surface-modified polymer or a coating or topical treatment on an article made from another material.
    Type: Application
    Filed: August 10, 2017
    Publication date: January 18, 2018
    Inventors: Robert S. WARD, Keith R. McCREA, James Parakka, Shanger Wang, Yuan Tian
  • Publication number: 20170188921
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Shanger Wang, Ted Tang Lee, Jiong Zou
  • Publication number: 20170188905
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The biointerface layer increases sensor longevity and decrease sensor inaccuracy by inhibiting accumulation of cells, proteins, and other biological species on the outermost layers of the sensor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Ted Tang Lee, Andrew Trinin Dennis, Shanger Wang, Jiong Zou
  • Publication number: 20170188922
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The biointerface layer increases sensor longevity and decrease sensor inaccuracy by inhibiting accumulation of cells, proteins, and other biological species on the outermost layers of the sensor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Ted Tang Lee, Andrew Trinin Dennis, Shanger Wang, Jiong Zou
  • Publication number: 20170188902
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Shanger Wang, Ted Tang Lee, Jiong Zou
  • Publication number: 20170188916
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer can comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise a diffusion-resistance layer, which can comprise a base polymer having a lowest Tg of greater than ?50 C.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 6, 2017
    Inventors: Shanger Wang, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A Tapsak, Huashi Zhang, Jiong Zou
  • Publication number: 20170188923
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Jiong Zou, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Shanger Wang
  • Publication number: 20170191955
    Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Inventors: Jiong Zou, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Shanger Wang
  • Patent number: 9603932
    Abstract: Intravaginal drug delivery device comprising at least one pharmaceutically active substance, and a polyurethane copolymer, wherein the copolymer has the structure according to formula (I): Also, method comprising administering one or more pharmaceutically active substances to a patient in need thereof.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: March 28, 2017
    Assignee: DSM IP ASSETS, B.V.
    Inventors: Robert S. Ward, Shanger Wang, Li Li, Durgaprasad Chalasani, Patrick Kiser, Meredith Roberts Clark
  • Publication number: 20160338734
    Abstract: The present disclosure relates to a needle including a wall structure, a cutting edge and a blunt contour. The needle advantageously can be used to deliver a sensor (such as a glucose or other analyte sensor) through an outer skin layer and into a sensor depth in a less invasive way than prior art needles. The size of the cutting edge is balanced against a portion of the distal wall structure that has blunt contours. Thus, the needle is capable of cutting the more durable outer skin layer (first phase) and then progressively stretching open the cut for further advancement into the subcutaneous layer (second phase). When the needle is sufficiently advanced, it is retracted leaving the sensor in a desired position. Early testing has shown a reduction of “dip and recover” from glucose sensors delivered using the needle.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Neel Shah, Jennifer Blackwell, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Shanger Wang