Patents by Inventor Shannon Marshall

Shannon Marshall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200265175
    Abstract: A user configurable modular building system is provided. The user configurable modular building system includes a plurality of assemblies, a plurality of units, and a plurality of blocks. The plurality of assemblies includes a plurality of building components that perform building functions. Assemblies are selected from the plurality of assemblies to form a plurality of units. The plurality of units includes studio, one bedroom, and two bedroom units with different layouts of the selected assemblies. Units are selected from the plurality of units to form a plurality of blocks. The blocks are portions of a building. Blocks are selected to form the building based on a mix and layout of units. A method of designing a building system and a non-transitory computer-readable medium configured to perform steps to design a building system are also provided.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Applicant: Katerra Inc.
    Inventors: Jay MARTIN, Peter SPRUANCE, Hill PIERCE, Josh LAFRENIERE, Libby SO, Peter WOLFF, Shane HERZER, Leroy TUNG, Katie BLESSER, David REDDING, Eric ROBERTS, Matthew Marc GRUNERT, Kristin JENSEN, Cameron MARSHALL, Shannon QIN, Christine KIEFER, Queena YI, Mike Dickson MILLS, Eva TALBOT, Roumeng WANG, Rochelle HILL, Lief FRIEDRICHS, Robert SMITH, Linda COPPA, Luis Pascual RODENAS GARCIA, Austin CUDWORTH, Ethan JENNERICH, Aubrey DAVIDSON, Sean DARNELL, Michael WEINERT, Aaron SCOTT, Gabriela GERINSKA, Michelle HA, Sam GIOIA, Joe LLONA, Nadav BITTAN
  • Publication number: 20200265173
    Abstract: A user configurable modular building system is provided. The user configurable modular building system includes a plurality of assemblies, a plurality of units, and a plurality of blocks. The plurality of assemblies includes a plurality of building components that perform building functions. Assemblies are selected from the plurality of assemblies to form a plurality of units. The plurality of units includes studio, one bedroom, and two bedroom units with different layouts of the selected assemblies. Units are selected from the plurality of units to form a plurality of blocks. The blocks are portions of a building. Blocks are selected to form the building based on a mix and layout of units. A method of designing a building system and a non-transitory computer-readable medium configured to perform steps to design a building system are also provided.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Applicant: Katerra Inc.
    Inventors: Jay MARTIN, Peter SPRUANCE, Hill PIERCE, Josh LAFRENIERE, Libby SO, Peter WOLFF, Shane HERZER, Leroy TUNG, Katie BLESSER, David REDDING, Eric ROBERTS, Matthew Marc GRUNERT, Kristin JENSEN, Cameron MARSHALL, Shannon QIN, Christine KIEFER, Queena YI, Mike Dickson MILLS, Eva TALBOT, Roumeng WANG, Rochelle HILL, Lief FRIEDRICHS, Robert SMITH, Linda COPPA, Luis Pascual RODENAS GARCIA, Austin CUDWORTH, Ethan JENNERICH, Aubrey DAVIDSON, Sean DARNELL, Michael WEINERT, Aaron SCOTT, Gabriela GERINSKA, Michelle HA, Sam GIOIA, Joe LLONA, Nadav BITTAN
  • Publication number: 20200265172
    Abstract: A user configurable modular building system is provided. The user configurable modular building system includes a plurality of assemblies, a plurality of units, and a plurality of blocks. The plurality of assemblies includes a plurality of building components that perform building functions. Assemblies are selected from the plurality of assemblies to form a plurality of units. The plurality of units includes studio, one bedroom, and two bedroom units with different layouts of the selected assemblies. Units are selected from the plurality of units to form a plurality of blocks. The blocks are portions of a building. Blocks are selected to form the building based on a mix and layout of units. A method of designing a building system and a non-transitory computer-readable medium configured to perform steps to design a building system are also provided.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Applicant: Katerra Inc.
    Inventors: Jay MARTIN, Peter SPRUANCE, Hill PIERCE, Josh LAFRENIERE, Libby SO, Peter WOLFF, Shane HERZER, Leroy TUNG, Katie BLESSER, David REDDING, Eric ROBERTS, Matthew Marc GRUNERT, Kristin JENSEN, Cameron MARSHALL, Shannon QIN, Christine KIEFER, Queena YI, Mike Dickson MILLS, Eva TALBOT, Roumeng WANG, Rochelle HILL, Lief FRIEDRICHS, Robert SMITH, Linda COPPA, Luis Pascual RODENAS GARCIA, Austin CUDWORTH, Ethan JENNERICH, Aubrey DAVIDSON, Sean DARNELL, Michael WEINERT, Aaron SCOTT, Gabriela GERINSKA, Michelle HA, Sam GIOIA, Joe LLONA, Nadav BITTAN
  • Publication number: 20200265174
    Abstract: A user configurable modular building system is provided. The user configurable modular building system includes a plurality of assemblies, a plurality of units, and a plurality of blocks. The plurality of assemblies includes a plurality of building components that perform building functions. Assemblies are selected from the plurality of assemblies to form a plurality of units. The plurality of units includes studio, one bedroom, and two bedroom units with different layouts of the selected assemblies. Units are selected from the plurality of units to form a plurality of blocks. The blocks are portions of a building. Blocks are selected to form the building based on a mix and layout of units. A method of designing a building system and a non-transitory computer-readable medium configured to perform steps to design a building system are also provided.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Applicant: Katerra Inc.
    Inventors: Jay MARTIN, Peter SPRUANCE, Hill PIERCE, Josh LAFRENIERE, Libby SO, Peter WOLFF, Shane HERZER, Leroy TUNG, Katie BLESSER, David REDDING, Eric ROBERTS, Matthew Marc GRUNERT, Kristin JENSEN, Cameron MARSHALL, Shannon QIN, Christine KIEFER, Queena YI, Mike Dickson MILLS, Eva TALBOT, Roumeng WANG, Rochelle HILL, Lief FRIEDRICHS, Robert SMITH, Linda COPPA, Luis Pascual RODENAS GARCIA, Austin CUDWORTH, Ethan JENNERICH, Aubrey DAVIDSON, Sean DARNELL, Michael WEINERT, Aaron SCOTT, Gabriela GERINSKA, Michelle HA, Sam GIOIA, Joe LLONA, Nadav BITTAN
  • Patent number: 9957312
    Abstract: Fusion proteins containing B7-H4 polypeptides are disclosed. The B7-H4 fusion proteins can include full-length B7-H4 polypeptides, or can contain a fragment of a full-length B7-H4 polypeptide, including some or all of the extracellular domain of the B7-H4 polypeptide. Methods for using the fusion proteins to downregulate T cell activation and for the treatment of inflammatory and autoimmune diseases and disorders are also disclosed. The B7-H4 fusion proteins are useful for treating inflammation by inhibiting or reducing differentiation, proliferation, activity, and/or cytokine production and/or secretion by ThI, ThI 7, Th22, and/or other cells that secrete, or cause other cells to secrete, inflammatory molecules, including, but not limited to, IL-1?, TNF-?, TGF-beta, IFN-?, IL-17, IL-6, IL-23, IL-22, IL-21, and MMPs; or enhancing IL-IO secretion by Tregs, increasing the differentiation of Tregs, increasing the number of Tregs, or combinations thereof.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 1, 2018
    Assignee: MedImmune, LLC
    Inventors: Solomon Langermann, Linda Liu, Joseph R. Podojil, Stephen D. Miller, Shannon Marshall
  • Patent number: 9676854
    Abstract: The present invention relates to antibodies (including anti-B7-H4 antibodies) and their antigen-binding fragments and to other molecules (including fusion proteins that bind to the cognate antigen/receptor, etc.) that are capable of immunospecifically binding to B7-H4 and the uses of such molecules in the diagnosis and the treatment of cancer and other diseases. The invention particularly concerns the use of such molecules to retard or prevent tumor growth, inhibit tumor-mediated suppression, eliminate tumors and/or deplete or block the activity of tumor associated macrophages (“TAMs”) so as to alter their activity and/or decrease TAM—mediated immune suppression.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: June 13, 2017
    Assignee: MedImmune, LLC
    Inventors: Linda Liu, Shannon Marshall, Solomon Langermann
  • Publication number: 20160130348
    Abstract: The present invention relates to antibodies and their antigen-binding fragments and to other molecules that are capable of immunospecifically binding to B7-H1 or PD-1. In some embodiments such molecules are additionally capable of modulating the ability of B7-H1 or B7-DC to bind to PD-1 or are capable of affecting the signaling activity of the B7-H1 or PD-1. The invention additionally concerns the uses of such molecules in the diagnosis and treatment of cancer and other diseases.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 12, 2016
    Inventors: Solomon Langermann, Linda Liu, Shannon Marshall, Sheng Yao
  • Publication number: 20160039905
    Abstract: Fusion proteins containing B7-II4 polypeptides are disclosed. The B7-H4 fusion proteins can include full-length B7-H4 polypeptides, or can contain a fragment of a full-length B7-H4 polypeptide, including some or all of the extracellular domain of the B7-H4 polypeptide. Methods for using the fusion proteins to downregulate T cell activation and for the treatment of inflammatory and autoimmune diseases and disorders are also disclosed. The B7-H4 fusion proteins are useful for treating inflammation by inhibiting or reducing differentiation, proliferation, activity, and/or cytokine production and/or secretion by Th1, Th1 7, Th22, and/or other cells that secrete, or cause other cells to secrete, inflammatory molecules, including, but not limited to, IL-1?, TNF-?, TGF-beta, IFN-?, IL-17, IL-6, IL-23, IL-22, IL-21, and MMPs; or enhancing IL-IO secretion by Tregs, increasing the differentiation of Tregs, increasing the number of Tregs, or combinations thereof.
    Type: Application
    Filed: April 6, 2015
    Publication date: February 11, 2016
    Inventors: Solomon Langermann, Linda Liu, Joseph R. Podojil, Stephen D. Miller, Shannon Marshall
  • Patent number: 9205148
    Abstract: The present invention relates to antibodies and their antigen-binding fragments and to other molecules that are capable of immunospecifically binding to B7-H1 or PD-1. In some embodiments such molecules are additionally capable of modulating the ability of B7-H1 or B7-DC to bind to PD-1 or are capable of affecting the signaling activity of the B7-H1 or PD-1. The invention additionally concerns the uses of such molecules in the diagnosis and treatment of cancer and other diseases.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 8, 2015
    Assignee: MedImmune, LLC
    Inventors: Solomon Langermann, Linda Liu, Shannon Marshall, Sheng Yao
  • Patent number: 9175065
    Abstract: Fibroblast growth factor receptor (FGFR) extracellular domain (ECD) acidic region muteins that have been engineered to exhibit decreased tissue binding by increasing the number of acidic amino acid residues within the D1-D2 linker region are provided. Polynucleotides encoding FGFR ECD acidic region muteins are also provided. Methods of making FGFR ECD acidic region muteins, and methods of using such molecules to treat proliferative disorders, including cancers, disorders of angiogenesis, and macular degeneration, are also provided.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 3, 2015
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Shannon Marshall, Deborah H. Charych, Ali Sadra
  • Patent number: 9011853
    Abstract: Fusion proteins containing B7-H4 polypeptides are disclosed. The B7-H4 fusion proteins can include full-length B7-H4 polypeptides, or can contain a fragment of a full-length B7-H4 polypeptide, including some or all of the extracellular domain of the B7-H4 polypeptide. Methods for using the fusion proteins to downregulate T cell activation and for the treatment of inflammatory and autoimmune diseases and disorders are also disclosed. The B7-H4 fusion proteins are useful for treating inflammation by inhibiting or reducing differentiation, proliferation, activity, and/or cytokine production and/or secretion by ThI, ThI 7, Th22, and/or other cells that secrete, or cause other cells to secrete, inflammatory molecules, including, but not limited to, IL-1?, TNF-?, TGF-beta, IFN-?, IL-17, IL-6, IL-23, IL-22, IL-21, and MMPs; or enhancing IL-IO secretion by Tregs, increasing the differentiation of Tregs, increasing the number of Tregs, or combinations thereof.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 21, 2015
    Assignee: Amplimmune, Inc.
    Inventors: Solomon Langermann, Linda Liu, Joseph R. Podojil, Stephen D. Miller, Shannon Marshall
  • Publication number: 20140356364
    Abstract: The present invention relates to antibodies (including anti-B7-H4 antibodies) and their antigen-binding fragments and to other molecules (including fusion proteins that bind to the cognate antigen/receptor, etc.) that are capable of immunospecifically binding to B7-H4 and the uses of such molecules in the diagnosis and the treatment of cancer and other diseases. The invention particularly concerns the use of such molecules to retard or prevent tumor growth, inhibit tumor-mediated suppression, eliminate tumors and/or deplete or block the activity of tumor associated macrophages (“TAMs”) so as to alter their activity and/or decrease TAM—mediated immune suppression.
    Type: Application
    Filed: August 15, 2012
    Publication date: December 4, 2014
    Applicant: AMPLIMMUNE, INC.
    Inventors: Solomon Langermann, Linda Liu, Shannon Marshall
  • Publication number: 20140170145
    Abstract: Disclosed is a newly identified secreted molecule, identified herein as “monocyte, granulocyte, and dendritic cell colony stimulating factor” (MGD-CSF), the polypeptide sequence, and polynucleotides encoding the polypeptide sequence. Also provided is a procedure for producing the polypeptide by recombinant techniques employing, for example, vectors and host cells. Additionally, procedures are described to modify the disclosed novel molecules of the invention to prepare fusion molecules. Also disclosed are methods for using the polypeptides and active fragments thereof for treatment of a variety of diseases, including, for example, cancer, autoimmune and inflammatory diseases, infectious diseases, and recurrent pregnancy loss.
    Type: Application
    Filed: October 8, 2013
    Publication date: June 19, 2014
    Applicant: FIVE PRIME THERAPEUTICS, INC.
    Inventors: Dirk Behrens, Elizabeth Bosch, Stephen K. Doberstein, Robert Forgan Halenbeck, Kevin Hestir, Min Mei Huang, Ernestine Lee, Haishan Lin, Thomas Linnemann, Shannon Marshall, Justin Wong, Ge Wu, Aileen Zhou, Cindy Leo, Lewis T. Williams
  • Publication number: 20140044738
    Abstract: The present invention relates to antibodies and their antigen-binding fragments and to other molecules that are capable of immunospecifically binding to B7-H1 or PD-1. In some embodiments such molecules are additionally capable of modulating the ability of B7-H1 or B7-DC to bind to PD-1 or are capable of affecting the signaling activity of the B7-H1 or PD-1. The invention additionally concerns the uses of such molecules in the diagnosis and treatment of cancer and other diseases.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 13, 2014
    Applicant: AMPLIMMUNE, INC.
    Inventors: Solomon Langermann, Linda Liu, Shannon Marshall, Sheng Yao
  • Patent number: 8575312
    Abstract: Disclosed is a newly identified secreted molecule, identified herein as “monocyte, granulocyte, and dendritic cell colony stimulating factor” (MGD-CSF), the polypeptide sequence, and polynucleotides encoding the polypeptide sequence. Also provided is a procedure for producing the polypeptide by recombinant techniques employing, for example, vectors and host cells. Additionally, procedures are described to modify the disclosed novel molecules of the invention to prepare fusion molecules. Also disclosed are methods for using the polypeptides and active fragments thereof for treatment of a variety of diseases, including, for example, cancer, autoimmune and inflammatory diseases, infectious diseases, and recurrent pregnancy loss.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Dirk Behrens, Elizabeth Bosch, Stephen K. Doberstein, Robert Forgan Halenbeck, Kevin Hestir, Min Mei Huang, Ernestine Lee, Haishan Lin, Thomas Linnemann, Shannon Marshall, Justin G. P. Wong, Ge Wu, Aileen Zhou, Cindy Leo, Lewis T. Williams
  • Publication number: 20130004492
    Abstract: Fibroblast growth factor receptor (FGFR) extracellular domain (ECD) acidic region muteins that have been engineered to exhibit decreased tissue binding by increasing the number of acidic amino acid residues within the D1-D2 linker region are provided. Polynucleotides encoding FGFR ECD acidic region muteins are also provided. Methods of making FGFR ECD acidic region muteins, and methods of using such molecules to treat proliferative disorders, including cancers, disorders of angiogenesis, and macular degeneration, are also provided.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: FIVE PRIME THERAPEUTIC INC.
    Inventors: Shannon Marshall, Deborah H. Charych, Ali Sadra
  • Patent number: 8338569
    Abstract: Fibroblast growth factor receptor (FGFR) extracellular domain (ECD) acidic region muteins that have been engineered to exhibit decreased tissue binding by increasing the number of acidic amino acid residues within the D1-D2 linker region are provided. Polynucleotides encoding FGFR ECD acidic region muteins are also provided. Methods of making FGFR ECD acidic region muteins, and methods of using such molecules to treat proliferative disorders, including cancers, disorders of angiogenesis, and macular degeneration, are also provided.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: December 25, 2012
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Shannon Marshall, Deborah H. Charych, Ali Sadra
  • Patent number: 8324165
    Abstract: The invention provides pharmaceutical polypeptide compositions that promote proteoglycan synthesis, and promote the activity of chondrocyte cells, thereby treating arthritis. Methods of providing these compositions to treat arthritis are also provided.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: December 4, 2012
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Kalyani Penta, Srinivas Kothakota, Lewis T. Williams, Kevin Hestir, Shannon Marshall, Jeffrey Finer, Yan Wang
  • Publication number: 20120276095
    Abstract: Fusion proteins containing B7-H4 polypeptides are disclosed. The B7-H4 fusion proteins can include full-length B7-H4 polypeptides, or can contain a fragment of a full-length B7-H4 polypeptide, including some or all of the extracellular domain of the B7-H4 polypeptide. Methods for using the fusion proteins to downregulate T cell activation and for the treatment of inflammatory and autoimmune diseases and disorders are also disclosed. The B7-H4 fusion proteins are useful for treating inflammation by inhibiting or reducing differentiation, proliferation, activity, and/or cytokine production and/or secretion by ThI, ThI 7, Th22, and/or other cells that secrete, or cause other cells to secrete, inflammatory molecules, including, but not limited to, IL-1?, TNF-?, TGF-beta, IFN-?, IL-17, IL-6, IL-23, IL-22, IL-21, and MMPs; or enhancing IL-IO secretion by Tregs, increasing the differentiation of Tregs, increasing the number of Tregs, or combinations thereof.
    Type: Application
    Filed: August 31, 2010
    Publication date: November 1, 2012
    Inventors: Solomon Langermann, Linda Liu, Joseph R. Podojil, Stephen D. Miller, Shannon Marshall
  • Publication number: 20120258071
    Abstract: Disclosed is a newly identified secreted molecule, identified herein as “monocyte, granulocyte, and dendritic cell colony stimulating factor” (MGD-CSF), the polypeptide sequence, and polynucleotides encoding the polypeptide sequence. Also provided is a procedure for producing the polypeptide by recombinant techniques employing, for example, vectors and host cells. Additionally, procedures are described to modify the disclosed novel molecules of the invention to prepare fusion molecules. Also disclosed are methods for using the polypeptides and active fragments thereof for treatment of a variety of diseases, including, for example, cancer, autoimmune and inflammatory diseases, infectious diseases, and recurrent pregnancy loss.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 11, 2012
    Inventors: Dirk Behrens, Elizabeth Bosch, Stephen K. Doberstein, Robert Forgan Halenbeck, Kevin Hestir, Min Mei Huang, Ernestine Lee, Haishan Lin, Thomas Linnemann, Shannon Marshall, Justin G. P. Wong, Ge Wu, Aileen Zhou, Cindy Leo, Lewis T. Williams