Patents by Inventor Shaun M. West

Shaun M. West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12104288
    Abstract: The present disclosure provides a core-sheath filament. The core-sheath filament includes an adhesive core and a non-tacky sheath, wherein the sheath exhibits a melt flow index of less than 15 grams per 10 minutes. The present disclosure also provides a method of printing an adhesive. The method includes a) melting a core-sheath filament in a nozzle to form a molten composition, and b) dispensing the molten composition through the nozzle onto a substrate. Steps a) and b) are carried out one or more times to form a printed adhesive. The core-sheath filament includes an adhesive core and a non-tacky sheath. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an article; and generating, with the manufacturing device by an additive manufacturing process using a core-sheath filament, the article including a printed adhesive based on the digital object.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: October 1, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Eric O. Nyaribo, Thomas Q. Chastek, Robert D. Waid, Ross J. DeVolder, Jacob D. Young, Shaun M. West, Mikhail A. Belkin, Joseph C. Dingeldein, Jay A. Esch, Mark E. Napierala
  • Patent number: 12023855
    Abstract: A core-sheath filament having a non-tacky sheath and a hot-melt processable adhesive core, the sheath exhibiting a melt flow index of less than 15 grams per 10 minutes, is provided. Methods of making the core-sheath filament and methods of using the core-sheath filament to print a hot-melt processable adhesive onto a primer-treated substrate surface to provide a structural bond are described.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: July 2, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Alexander J. Kugel, Mark E. Napierala, Thomas Q. Chastek, Shaun M. West, Jacob D. Young, Ross E. Behling
  • Publication number: 20230357602
    Abstract: Methods of bonding a pressure-sensitive adhesive to a substrate are provided. The methods include heating a styrenic block copolymer composition to provide an adhesive melt composition, wherein the styrenic block copolymer composition contains a hard segment block with a glass transition temperature of from 90° C. to 220° C.; masticating the adhesive melt composition; delivering the adhesive melt composition onto the substrate at a temperature that exceeds the glass transition temperature of the hard segment block by from 20° C. to 150° C.; and cooling the adhesive melt composition to obtain a bonded pressure-sensitive adhesive. Optionally, the substrate can be a non-film substrate, or the styrenic block copolymer composition can be provided in a core-sheath filament that includes a styrenic block copolymer core and a sheath that is non-tacky at ambient temperature.
    Type: Application
    Filed: February 25, 2020
    Publication date: November 9, 2023
    Inventors: Mark E. NAPIERALA, Thomas Q. CHASTEK, Robert D. WAID, Ross E. BEHLING, Shaun M. WEST, Jacob D. YOUNG
  • Publication number: 20230278281
    Abstract: A core-sheath filament having a non-tacky sheath and a hot-melt processable adhesive core, the sheath exhibiting a melt flow index of less than 15 grams per 10 minutes, is provided. Methods of making the core-sheath filament and methods of using the core-sheath filament to print a hot-melt processable adhesive onto a primer-treated substrate surface to provide a structural bond are described.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 7, 2023
    Inventors: Alexander J. Kugel, Mark E. Napierala, Thomas Q. Chastek, Shaun M. West, Jacob D. Young, Ross E. Behling
  • Patent number: 11725308
    Abstract: A core-sheath filament including a crosslinkable adhesive core that can be cured using ultraviolet or visible light radiation. These crosslinkable adhesive core compositions can provide very high bond strength and are capable of replacing traditional mechanical fasteners in many industrial applications. Core-sheath filaments including such crosslinkable compositions, crosslinked compositions, articles containing these compositions, and methods of making the articles are provided. The crosslinkable compositions contain pendant aromatic ketone groups or pendant (meth)acryloyl groups that, upon exposure to ultraviolet radiation, result in the formation of crosslinks within the polymeric material. The crosslinked compositions can function as pressure-sensitive adhesives.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: August 15, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Ross E. Behling, Thomas Q. Chastek, Mark E. Napierala, Alexander J. Kugel, Shaun M. West, Robert D. Waid, Jacob D. Young
  • Patent number: 11673317
    Abstract: A core-sheath filament having a non-tacky sheath and a hot-melt processable adhesive core, the sheath exhibiting a melt flow index of less than 15 grams per 10 minutes, is provided. Methods of making the core-sheath filament and methods of using the core-sheath filament to print a hot-melt processable adhesive onto a primer-treated substrate surface to provide a structural bond are described.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: June 13, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Alexander J. Kugel, Shantanu R. Ranade, Mark E. Napierala, Thomas Q. Chastek, Shaun M. West, Jacob D. Young, Ross E. Behling
  • Publication number: 20230116424
    Abstract: A core-sheath filament is provided that includes a curable composition. The curable composition contains an epoxy resin and a photoacid generator. Methods of making the core-sheath filament and methods of using the core-sheath filament for printing and bonding are provided. The core-sheath filaments can be used to form a cured composition having structural bonding performance.
    Type: Application
    Filed: March 16, 2021
    Publication date: April 13, 2023
    Inventors: Kathleen S. Shafer, Thomas Q. Chastek, Mark E. Napierala, Jacob D. Young, Ross E. Behling, Shaun M. West, John Christopher Thomas
  • Publication number: 20230089703
    Abstract: Core-sheath filaments comprising cores including a polymer and 1 wt. % to 10 wt. % of a blowing agent, that can be dispensed as the core in a core-sheath construction. Dispensed adhesive compositions comprising the disclosed core-sheath filaments, the dispensed adhesive composition being a product resulting from compounding the core-sheath filament through a heated extruder nozzle. Methods of preparing core-sheath filaments.
    Type: Application
    Filed: December 16, 2020
    Publication date: March 23, 2023
    Inventors: Jeffrey P. Kalish, Thomas Q. Chastek, Jacob D. Young, Shaun M. West, Jason D. McNulty
  • Publication number: 20220298676
    Abstract: Provided are amorphous polyolefin compositions that can be dispensed digitally as the core in a core-sheath construction. These formulations provide dependable adhesion to both polar and non-polar surface in addition to providing a high barrier to air and moisture which is beneficial in many applications. These formulations and the method of processing these formulations provide many benefits, including low VOCs, avoiding die cutting, design flexibility, achieving intricate nonplanar bonding patterns, printing on thin and/or delicate substrates, and printing on an irregular and/or complex topography, no need for release liners or low-adhesion backsize, and no need for a post-processing step.
    Type: Application
    Filed: August 18, 2020
    Publication date: September 22, 2022
    Inventors: Vasav Sahni, Mark W. Emerson, Jacob D. Young, Shaun M. West, Thomas Q. Chastek, Jason D. Clapper
  • Publication number: 20220290335
    Abstract: A core-sheath filament including a crosslinkable adhesive core that can be cured using ultraviolet or visible light radiation. These crosslinkable adhesive core compositions can provide very high bond strength and are capable of replacing traditional mechanical fasteners in many industrial applications. Core-sheath filaments including such crosslinkable compositions, crosslinked compositions, articles containing these compositions, and methods of making the articles are provided. The crosslinkable compositions contain pendant aromatic ketone groups or pendant (meth)acryloyl groups that, upon exposure to ultraviolet radiation, result in the formation of crosslinks within the polymeric material. The crosslinked compositions can function as pressure-sensitive adhesives.
    Type: Application
    Filed: August 12, 2020
    Publication date: September 15, 2022
    Inventors: Ross E. Behling, Thomas Q. Chastek, Mark E. Napierala, Alexander J. Kugel, Shaun M. West, Robert D. Waid, Jacob D. Young
  • Publication number: 20220281159
    Abstract: A core-sheath filament having a non-tacky sheath and a hot-melt processable adhesive core, the sheath exhibiting a melt flow index of less than 15 grams per 10 minutes, is provided. Methods of making the core-sheath filament and methods of using the core-sheath filament to print a hot-melt processable adhesive onto a primer-treated substrate surface to provide a structural bond are described.
    Type: Application
    Filed: August 5, 2020
    Publication date: September 8, 2022
    Inventors: Alexander J. Kugel, Shantanu R. Ranade, Mark E. Napierala, Thomas Q. Chastek, Shaun M. West, Jacob D. Young, Ross E. Behling
  • Publication number: 20220259770
    Abstract: A core-sheath filament having a pressure-sensitive adhesive core and a non-tacky thermoplastic sheath that surrounds the core is provided. The pressure-sensitive adhesive core includes a) a silicone-containing block copolymer having multiple poly-diorganosiloxane segments plus b) a silicone tackifying resin. Additionally, methods of making the core-sheath filament and methods of using the core-sheath filament to print a pressure-sensitive adhesive are described.
    Type: Application
    Filed: August 10, 2020
    Publication date: August 18, 2022
    Inventors: Ross E. Behling, Karl E. Benson, Thomas Q. Chastek, Mark E. Napierala, David S. Hays, Kent C. Hackbarth, Jacob D. Young, Shaun M. West, Daniel Carvajal
  • Publication number: 20220259465
    Abstract: A core-sheath filament having a) a core that is a thermally conductive pressure-sensitive adhesive particles and b) a non-tacky, thermoplastic sheath is provided. The thermally conductive pressure-sensitive adhesive in the core includes a (meth)acrylate-based polymeric material and thermally conductive particles. Additionally, methods of making the core-sheath filament and methods of using the core-sheath filament to print a thermally conductive pressure-sensitive adhesive are described.
    Type: Application
    Filed: August 6, 2020
    Publication date: August 18, 2022
    Inventors: Alexander J. Kugel, Mario A. Perez, Sebastian Goris, Matthew H. Frey, Ross E. Behling, Mark E. Napierala, Thomas Q. Chastek, Jacob D. Young, Shaun M. West, Tomoaki Uchiya
  • Patent number: 11390779
    Abstract: Film constructions and articles including the film constructions, wherein a film construction includes: a backing (or an adhesive layer) having a first major surface and a second major surface; and a release layer disposed on the first major surface of the backing (or adhesive layer), wherein the release layer includes polylactic acid.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: July 19, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Dylan J. V. Shallbetter, Jeffrey O. Emslander, Christopher J. Rother, Mark E. Schwartz, Jacob D. Young, Shaun M. West
  • Publication number: 20210163792
    Abstract: The present disclosure relates generally to cohesive compositions, articles including a cohesive composition, and methods of making such compositions and articles. In some embodiments, the cohesive compositions include rubber, thermoplastic elastomer, filler, and UV or heat stabilizers. In some embodiments, the cohesive articles include the cohesive composition described herein adjacent to a backing. In some embodiments, the cohesive articles further include at least one of a tie layer and a seal layer. Some embodiments of the present disclosure further relate to packaging materials that include the cohesive articles of the present disclosure. Such packaging materials may also include, for example, a cushioning layer and an outer layer. In other embodiments, the present disclosure relates to fastening systems comprising cohesive compositions and films described herein.
    Type: Application
    Filed: August 7, 2019
    Publication date: June 3, 2021
    Inventors: Ying-Yuh Lu, Mitchell A.F. Johnson, Gregg A. Patnode, Shaun M. West, Jeffrey O. Emslander, Shannon R.A. Harnden, Katelyn M. Leniczek, Lacey E. McMullen, Allyson V. Grym
  • Publication number: 20210122948
    Abstract: Film constructions and articles including the film constructions, wherein a film construction includes: a backing (or an adhesive layer) having a first major surface and a second major surface; and a release layer disposed on the first major surface of the backing (or adhesive layer), wherein the release layer includes polylactic acid.
    Type: Application
    Filed: May 21, 2018
    Publication date: April 29, 2021
    Inventors: Dylan J.V. Shallbetter, Jeffrey O. Emslander, Christopher J. Rother, Mark E. Schwartz, Jacob D. Young, Shaun M. West
  • Publication number: 20210002793
    Abstract: The present disclosure provides a core-sheath filament. The core-sheath filament includes an adhesive core and a non-tacky sheath, wherein the sheath exhibits a melt flow index of less than 15 grams per 10 minutes. The present disclosure also provides a method of printing an adhesive. The method includes a) melting a core-sheath filament in a nozzle to form a molten composition, and b) dispensing the molten composition through the nozzle onto a substrate. Steps a) and b) are carried out one or more times to form a printed adhesive. The core-sheath filament includes an adhesive core and a non-tacky sheath. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an article; and generating, with the manufacturing device by an additive manufacturing process using a core-sheath filament, the article including a printed adhesive based on the digital object.
    Type: Application
    Filed: February 8, 2019
    Publication date: January 7, 2021
    Inventors: Eric O. NYARIBO, Thomas Q. CHASTEK, Robert D. WAID, Ross J. DeVOLDER, Jacob D. YOUNG, Shaun M. WEST, Mikhail A. BELKIN, Joseph C. DINGELDEIN, Jay A. ESCH, Mark E. NAPIERALA
  • Publication number: 20190062602
    Abstract: The present disclosure generally relates to adhesive compositions, adhesive articles including the adhesive compositions, methods of making the adhesive compositions and articles, and methods of using the adhesive compositions and articles. The adhesive compositions of the present disclosure include a thermoplastic phenolic resin made from the reaction of (1) alkyl phenol (e.g., butyl- or octyl- or -nonyl) and formaldehyde; or (2) alkyl phenol (e.g., butyl- or octyl-) and acetaldehyde; or (3) alkyl phenol (e.g., butyl- or octyl-) and acetylene. The present disclosure also generally relates to adhesive articles including these adhesive compositions. The inventors of the present disclosure found that such adhesive articles exhibit excellent adhesion to architectural coatings with including low or no VOCs, deep base formulations, and/or formulations including primer in various conditions, including, for example, high humidity.
    Type: Application
    Filed: January 26, 2017
    Publication date: February 28, 2019
    Inventors: Prince P. Antony, Joseph T. Bartusiak, Christopher J. Rother, Bradley S. Forney, Justin M. Bolton, Nishant C. Kumar, Shaun M. West, Dean Xiong