Patents by Inventor Shawn Tebbe

Shawn Tebbe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8096996
    Abstract: A rod reduction instrument for position a rod relative to a seat of a bone anchor in a spinal implant system is provided. The instrument includes three concentric cannulas with circumferentially aligned rod receiving portions formed therein. One cannula is movable with respect to another to lock and unlock the seat of a bone anchor to the rod reduction instrument. The rod to be reduced is positioned inside at least one of the rod receiving portion. One cannula is moved with respect to another to lock the seat of the bone anchor to the rod reduction instrument. Once locked to the bone anchor, the remaining cannula is moved to reduce the distance between the rod and the seat within at least one of the rod receiving portions. The distance between the rod and the seat is reduced until the rod is position inside the seat. A secondary instrument is inserted through a central bore of the rod reduction instrument to introduce a cap and lock the cap to the seat securing the rod to the bone anchor.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: January 17, 2012
    Assignee: Exactech, Inc.
    Inventors: Robert Gutierrez, Shawn Tebbe, Moti Altarac, Stanley Kyle Hayes, Joey Camia Reglos
  • Publication number: 20110307016
    Abstract: A dynamic bone stabilization system is provided. The system may be placed through small incisions and tubes. The system provides systems and methods of treating the spine, which eliminate pain and enable spinal motion, which effectively mimics that of a normally functioning spine. Methods are also provided for stabilizing the spine and for implanting the subject systems.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 15, 2011
    Applicant: Exactech, Inc.
    Inventors: Joey Camia Reglos, Moti Altarac, Stanley Kyle Hayes, Shawn Tebbe, Daniel H. Kim, J. Christopher Flaherty
  • Patent number: 7935134
    Abstract: A dynamic bone stabilization system is provided. The system may be placed through small incisions and tubes. The system provides systems and methods of treating the spine, which eliminate pain and enable spinal motion, which effectively mimics that of a normally functioning spine. Methods are also provided for stabilizing the spine and for implanting the subject systems.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: May 3, 2011
    Assignee: Exactech, Inc.
    Inventors: Joey Camia Reglos, Moti Altarac, Stanley Kyle Hayes, Shawn Tebbe, Daniel H. Kim, J. Christopher Flaherty
  • Publication number: 20090222043
    Abstract: A percutaneous and minimally invasive instrument system for implanting an interspinous process spacer into a patient is disclosed. The insertion instrument system includes an inserter and a driver. The inserter is configured to releasably clamp to an interspinous process spacer for its delivery, implantation and deployment. The driver is configured for removable insertion into a proximal end of a passageway of the inserter. The driver has a distal spacer engaging portion configured to engage that part of the spacer requiring activation for the deployment of the spacer from at least one undeployed configuration to at least one deployed configuration and vice versa. As the spacer goes from the undeployed to the deployed configuration and vice versa, the system advantageously provides a degree of deployment information to the user via at least one deployment indicator.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 3, 2009
    Inventors: Moti Altarac, Shawn Tebbe, Daniel H. Kim
  • Publication number: 20090138046
    Abstract: An implantable spacer for placement between adjacent spinous processes in a spinal motion segment is provided. The spacer includes a body defining a longitudinal passageway. A first arm and a second arm are connected to the body. Each arm has a pair of extensions and a saddle defining a receiving portion configured for seating a spinous process of a scoliotic spine or a spine with misaligned spinous processes. Each arm has a proximal caming surface and is capable of rotation with respect to the body. An actuator assembly is disposed inside the longitudinal passageway and connected to the body. When advanced, a threaded shaft of the actuator assembly contacts the caming surfaces of arms to rotate them from an undeployed configuration to a deployed configuration. In the deployed configuration, the distracted adjacent spinous processes are seated in the superior and inferior arms of the spacer. Variations adapted for scoliotic curves are provided.
    Type: Application
    Filed: January 15, 2009
    Publication date: May 28, 2009
    Inventors: Moti Altarac, Shawn Tebbe, Daniel H. Kim
  • Publication number: 20090138055
    Abstract: A percutaneous and minimally invasive instrument for inserting an interspinous process spacer into a patient is disclosed. The insertion instrument includes a first assembly connected to a handle assembly. The first assembly includes an inner shaft located inside an outer shaft and configured for relative translational motion with respect to the outer shaft. The relative translational motion causes one of the outer or inner shafts to move with respect to the other and thereby deflect at least one prong formed on one of the inner or outer shafts wherein such deflection causes engagement with a juxtapositioned interspinous spacer. The instrument further includes a driving tool configured for removable insertion into a proximal end of a passageway of the instrument. The driving tool has a distal spacer engaging portion configured to engage that part of the spacer requiring activation for deployment of the spacer from at least one undeployed configuration to at least one deployed configuration and vice versa.
    Type: Application
    Filed: December 18, 2008
    Publication date: May 28, 2009
    Inventors: Moti Altarac, Shawn Tebbe, Daniel H. Kim
  • Publication number: 20090125030
    Abstract: A dilator that facilitates implantation of an interspinous spacer is provided. The dilator includes a proximal portion and a tapered distal portion interconnected by an elongated body portion. The tapered distal portion is ideally suited for splitting ligamentous tissue for creating a posterior midline pathway through the supraspinous ligament as well as for distracting the adjacent spinous processes. Two oppositely located and longitudinally extending channels or grooves are formed in the outer surface of the dilator for stabilizing the dilator with respect to the spinous processes. An accompanying cannula together with the dilator form a system for the distraction of the adjacent spinous processes, stabilization of the spinous processes with respect to the system and creation of a working channel for the implantation of an interspinous spacer.
    Type: Application
    Filed: January 22, 2009
    Publication date: May 14, 2009
    Inventors: Shawn Tebbe, Moti Altarac, Yang Cheng
  • Publication number: 20080319550
    Abstract: An implantable spacer for placement between adjacent spinous processes is provided. The spacer includes a body and a wing rotatable connected to the body. The wing includes two U-shaped configurations that together define a substantially H-shaped configuration for retaining the spacer between adjacent spinous processes. An actuator assembly is connected to the body and to the wing with the proximal end of the spacer being connectable to a removable driver that is configured to engage the actuator assembly. While connected to the spacer, the driver is rotatable in one direction to deploy the wing from an undeployed to a deployed configuration and in an opposite direction to undeploy the wing. In the deployed configuration, the spacer acts as a space holder opening up the area of the spinal canal, maintaining foraminal height, reducing stress on the facet joints and relieving pain for the patient.
    Type: Application
    Filed: September 5, 2008
    Publication date: December 25, 2008
    Inventors: Moti Altarac, Shawn Tebbe, Joey Camia Reglos, Yang Cheng
  • Publication number: 20080294263
    Abstract: An implantable spacer for placement between adjacent spinous processes in a spinal motion segment is provided. The spacer includes a body defining a longitudinal axis and passageway. A first arm and a second arm are connected to the body. Each arm has a pair of extensions and a saddle defining a U-shaped configuration for seating a spinous process therein. Each arm has a proximal caming surface and is capable of rotation with respect to the body. An actuator assembly is disposed inside the passageway and connected to the body. When advanced, a threaded shaft of the actuator assembly contacts the caming surfaces of arms to rotate them from an undeployed configuration to a deployed configuration. In the deployed configuration, the distracted adjacent spinous processes are seated in the U-shaped portion of the arms.
    Type: Application
    Filed: July 24, 2008
    Publication date: November 27, 2008
    Inventors: Moti Altarac, Shawn Tebbe, Joey Camia Reglos, Yang Cheng, Murali P. Kadaba, Daniel H. Kim
  • Publication number: 20080287997
    Abstract: An implantable spacer for placement between adjacent spinous processes in a spinal motion segment is provided. The spacer includes a body defining a longitudinal axis and passageway. A first arm and a second arm are connected to the body. Each arm has a pair of extensions and a saddle defining a U-shaped configuration for seating a spinous process therein. Each arm has a proximal caming surface and is capable of rotation with respect to the body. An actuator assembly is disposed inside the passageway and connected to the body. When advanced, a threaded shaft of the actuator assembly contacts the caming surfaces of arms to rotate them from an undeployed configuration to a deployed configuration. In the deployed configuration, the distracted adjacent spinous processes are seated in the U-shaped portion of the arms.
    Type: Application
    Filed: July 8, 2008
    Publication date: November 20, 2008
    Inventors: Moti Altarac, Shawn Tebbe, Joey Camia Reglos, Yang Cheng, Murali P. Kadaba, Daniel H. Kim
  • Publication number: 20080234678
    Abstract: A rod reduction instrument for position a rod relative to a seat of a bone anchor in a spinal implant system is provided. The instrument includes three concentric cannulas with circumferentially aligned rod receiving portions formed therein. One cannula is movable with respect to another to lock and unlock the seat of a bone anchor to the rod reduction instrument. The rod to be reduced is positioned inside at least one of the rod receiving portion. One cannula is moved with respect to another to lock the seat of the bone anchor to the rod reduction instrument. Once locked to the bone anchor, the remaining cannula is moved to reduce the distance between the rod and the seat within at least one of the rod receiving portions. The distance between the rod and the seat is reduced until the rod is position inside the seat. A secondary instrument is inserted through a central bore of the rod reduction instrument to introduce a cap and lock the cap to the seat securing the rod to the bone anchor.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Inventors: Robert Gutierrez, Shawn Tebbe, Moti Altarac, Stanley Kyle Hayes, Joey Camia Reglos
  • Publication number: 20080195152
    Abstract: A novel implantable spacer for placement between adjacent spinous processes in a spinal motion segment is provided. The spacer includes a body defining a longitudinal passageway. A first arm and a second arm are connected to the body. Each arm has a pair of extensions and a saddle defining a U-shaped configuration for seating a spinous process therein. Each arm has a proximal camming surface and is capable of rotation with respect to the body. An actuator assembly is disposed inside the longitudinal passageway and connected to the body. When advanced, the actuator assembly contacts the camming surfaces of the arms to rotate them from an undeployed configuration to a deployed configuration. In the deployed configuration, the distracted adjacent spinous processes are seated in the U-shaped portion of the arms providing sufficient distraction to open the neural foramen to relieve pain. An insertion instrument is provided for implanting the interspinous process spacer.
    Type: Application
    Filed: April 16, 2008
    Publication date: August 14, 2008
    Inventors: Moti Altarac, Shawn Tebbe
  • Publication number: 20070276370
    Abstract: A plurality of individual tools is provided where each tool is uniquely configured to perform a step or a portion of a step in a novel procedure associated with the implantation of a stabilizing device (e.g., an interspinous spacer) for stabilizing at least one spinal motion segment. The tools are usable individually, or more preferably as a tooling system in which the tools are collectively employed to implant an interspinous spacer, generally in a minimally invasive manner. For example, each of the tools is arranged with coordinated markings and/or other features to ensure consistent depths of insertion, proper orientation of the tools with respect to each other or an anatomical feature of the patient, and precise delivery of the spacer to maintain safe positioning throughout the implantation procedure.
    Type: Application
    Filed: October 18, 2006
    Publication date: November 29, 2007
    Applicant: Vertiflex, Inc.
    Inventors: Moti Altarac, Robert Gutierrez, Shawn Tebbe, Daniel Kim, J. Flaherty
  • Publication number: 20070173832
    Abstract: Devices, systems and methods for dynamically stabilizing the spine are provided. The devices include an expandable spacer having an undeployed configuration and a deployed configuration, wherein the spacer has axial and radial dimensions for positioning between the spinous processes of adjacent vertebrae. The systems include one or more spacers and a mechanical actuation means for delivering and deploying the spacer. The methods involve the implantation of one or more spacers within the interspinous space.
    Type: Application
    Filed: November 7, 2006
    Publication date: July 26, 2007
    Applicant: Vertiflex, Inc.
    Inventors: Shawn Tebbe, Moti Altarac, Daniel Kim
  • Publication number: 20070161991
    Abstract: Devices, systems and methods for dynamically stabilizing the spine are provided. The devices include an expandable spacer having an undeployed configuration and a deployed configuration, wherein the spacer has axial and radial dimensions for positioning between the spinous processes of adjacent vertebrae. The systems include one or more spacers and a mechanical actuation means for delivering and deploying the spacer. The methods involve the implantation of one or more spacers within the interspinous space.
    Type: Application
    Filed: December 20, 2005
    Publication date: July 12, 2007
    Inventors: Moti Altarac, Shawn Tebbe, J. Flaherty