Patents by Inventor Shengmao Zhang

Shengmao Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11136527
    Abstract: A lubricant, including, by weight: 80-85 parts of a base oil; 1-2 parts of a methyl-silicone oil; 1-2 parts of polymethacrylate; 2-4 parts of pentaerythritol polyisobutylene succinate; 1-2 parts of di-n-butyl phosphite; 2-3 parts of butylhydroxytoluene; 2-4 parts of an ethylene-propylene copolymer; 1-2 parts of an alkenyl succinate; and 3-5 parts of copper nanoparticles. A method of preparing the lubricant includes: adding the base oil, the methyl-silicone oil, the polymethacrylate, the ethylene-propylene copolymer, the butylhydroxytoluene, the alkenyl succinate to a reactor, and stirring a resulting first mixture under normal temperature and pressure at 300-400 rpm for 3-4 hours, to yield a primary product; and adding the di-n-butyl phosphite, the pentaerythritol polyisobutylene succinate, and the copper nanoparticles to the primary product, and stirring a resulting second mixture at 150-250 rpm for 2-2.5 hours.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 5, 2021
    Assignee: HENAN UNIVERSITY
    Inventors: Yujuan Zhang, Shengmao Zhang, Pingyu Zhang, Zhijun Zhang
  • Publication number: 20200080019
    Abstract: A lubricant, including, by weight: 80-85 parts of a base oil; 1-2 parts of a methyl-silicone oil; 1-2 parts of polymethacrylate; 2-4 parts of pentaerythritol polyisobutylene succinate; 1-2 parts of di-n-butyl phosphite; 2-3 parts of butylhydroxytoluene; 2-4 parts of an ethylene-propylene copolymer; 1-2 parts of an alkenyl succinate; and 3-5 parts of copper nanoparticles. A method of preparing the lubricant includes: adding the base oil, the methyl-silicone oil, the polymethacrylate, the ethylene-propylene copolymer, the butylhydroxytoluene, the alkenyl succinate to a reactor, and stirring a resulting first mixture under normal temperature and pressure at 300-400 rpm for 3-4 hours, to yield a primary product; and adding the di-n-butyl phosphite, the pentaerythritol polyisobutylene succinate, and the copper nanoparticles to the primary product, and stirring a resulting second mixture at 150-250 rpm for 2-2.5 hours.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Yujuan ZHANG, Shengmao ZHANG, Pingyu ZHANG, Zhijun ZHANG
  • Publication number: 20190194030
    Abstract: A method of preparing a nanosheet tungsten disulfide. The method includes: heating a mixture including tungsten hexachloride, a sulfur source, and a surface modifier to a temperature of between 100 and 200° C. for at least 60 min. The sulfur source is thioacetamide or thiourea. The surface modifier is a C6-40 straight-chain or branched fatty acid, aliphatic amine, or a mixture thereof.
    Type: Application
    Filed: March 3, 2019
    Publication date: June 27, 2019
    Inventors: Shengmao ZHANG, Zhengquan JIANG, Yujuan ZHANG, Pingyu ZHANG, Zhijun ZHANG
  • Patent number: 8900659
    Abstract: The present invention relates to a method of forming copper nanowires with a metallic coating. In a preferred embodiment, the metallic coating is copper. Due to the metal coating, the nanowires become magnetically guidable and chemically stable. As such, the nanowires can be used to form nanomesh. Further, the nanowire and nanomesh of the present invention can be used as transparent electrodes that are used in TV, PC, touch-control, and solar industries.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 2, 2014
    Assignee: National University of Signapore
    Inventors: Hua Chun Zeng, Shengmao Zhang, Yu Chang, Mei Ling Lye
  • Publication number: 20130118775
    Abstract: The present invention relates to a method of forming copper nanowires with a metallic coating. In a preferred embodiment, the metallic coating is copper. Due to the metal coating, the nanowires become magnetically guidable and chemically stable. As such, the nanowires can be used to form nanomesh. Further, the nanowire and nanomesh of the present invention can be used as transparent electrodes that are used in TV, PC, touch-control, and solar industries.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 16, 2013
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Hua Chun Zeng, Shengmao Zhang, Yu Chang, Mei Ling Lye