Patents by Inventor Shengqing Xu

Shengqing Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11059994
    Abstract: A silicone resin is disclosed. The silicone resin is free from carbon atoms. A method of preparing the resin is additionally disclosed. This method comprises reacting a silane compound and a precursor compound, thereby preparing the silicone resin. A composition including the silicon resin and a vehicle is further disclosed. A method of preparing a film with the composition is also disclosed. This method comprises applying the composition including the silicone resin and the vehicle to a substrate to form a layer. This method also includes heating the layer to give the film.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 13, 2021
    Assignee: Dow Silicones Corporation
    Inventors: Randall G. Schmidt, Yanhu Wei, Shengqing Xu
  • Publication number: 20210198450
    Abstract: A composition contains an aryl-functionalized polysiloxane and quaternary ammonium compound, where the quaternary ammonium compound has an anion selected from a group consisting of: halides, salicylate, octanoate, acetate, dihydrogen citrate, maleate, hydrogenglutaric acid anion, and bistartaric acid anion.
    Type: Application
    Filed: August 19, 2019
    Publication date: July 1, 2021
    Inventors: Shengqing Xu, Steven Swier, Martijn A. Beukema
  • Publication number: 20200248031
    Abstract: A silicone resin is disclosed. The silicone resin is free from carbon atoms. A method of preparing the resin is additionally disclosed. This method comprises reacting a silane compound and a precursor compound, thereby preparing the silicone resin. A composition including the silicon resin and a vehicle is further disclosed. A method of preparing a film with the composition is also disclosed. This method comprises applying the composition including the silicone resin and the vehicle to a substrate to form a layer. This method also includes heating the layer to give the film.
    Type: Application
    Filed: July 30, 2018
    Publication date: August 6, 2020
    Inventors: Randall G. SCHMIDT, Yanhu WEI, Shengqing XU
  • Patent number: 10175510
    Abstract: A smart optical material characterized in that when the material is at ambient temperature (?30° C.), it is opaque to at least one color light in the visible light spectrum and when the material is at an elevated temperature of at least 80° C., it is substantially transparent to the at least one color light. The smart optical material is also characterized as having before thermal aging an elongation-at-break of at least 15% and after thermal aging in air at 200° C. for seven days an elongation-at-break that is unchanged or is at least 12% and has decreased by from >0% to less than 50%. Also included are related formulations, methods, uses, articles and devices.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: January 8, 2019
    Assignee: Dow Corning Corporation
    Inventors: Randall G. Schmidt, Lauren M. Tonge, Shengqing Xu
  • Publication number: 20180299705
    Abstract: A smart optical material characterized in that when the material is at ambient temperature (?30° C.), it is opaque to at least one color light in the visible light spectrum and when the material is at an elevated temperature of at least 80° C., it is substantially transparent to the at least one color light. The smart optical material is also characterized as having before thermal aging an elongation-at-break of at least 15% and after thermal aging in air at 200° C. for seven days an elongation-at-break that is unchanged or is at least 12% and has decreased by from >0% to less than 50%. Also included are related formulations, methods, uses, articles and devices.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 18, 2018
    Applicant: Dow Corning Corporation
    Inventors: Randall G. SCHMIDT, Lauren M. TONGE, Shengqing XU
  • Publication number: 20180127552
    Abstract: A gel having improved thermal stability is the hydrosilylation reaction product of (A) an organopolysiloxane having an average of at least 0.1 silicon-bonded alkenyl group per molecule and (B) a cross-linker having an average of at least 2 silicon-bonded hydrogen atoms per molecule. (A) and (B) react via hydrosilylation in the presence of (C) a hydrosilylation catalyst and (D) a heated reaction product of iron acetylacetonate. The iron acetylacetonate is present prior to heating in an amount of from about 0.05 to about 30 weight percent based on a total weight of (A) and (B). The gel is formed using a method that includes the steps of (I) heating the iron acetylacetonate to form the (D) heated reaction product of the iron acetylacetonate and (II) combining (A), (B), (C) and (D) to effect the hydrosilylation reaction of (A) and (B) in the presence of (C) and (D) to form the gel.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Inventors: Matt D. Dowland, Daesup Hyun, John J. Kennan, Kent R. Larson, Randall G. Schmidt, Shengqing Xu
  • Patent number: 9556327
    Abstract: An additive for a silicone encapsulant has the structure: Formula (I) wherein R1 and R2 are each —O—Si(R4)(R5)(R6) and each of R4, R5, and R6 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups, and wherein R3 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups. The additive is formed using a method that includes the step of reacting iron metal or an iron (III) compound with a hydroxyl functional organosiloxane. An encapsulant includes the additive and a polyorganosiloxane. The encapsulant can be utilized to form a device that includes an electronic component and the encapsulant disposed on the electronic component. The device is formed using a method that includes the step of disposing the encapsulant on the electronic device.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: January 31, 2017
    Assignee: Dow Corning Corporation
    Inventors: Don L Kleyer, Randall G Schmidt, Adam C Tomasik, Shengqing Xu
  • Patent number: 9550866
    Abstract: An aryl group-containing siloxane composition is formed by introducing an alkaline earth-metal as a part of the reaction product of an organopolysiloxane having at least two alkenyl groups per molecule and an organopolysiloxane having at least two silicon-bonded hydrogen atoms per molecule in the presence of a hydrosilylation catalyst, wherein at least one of the organopolysiloxanes includes an aryl group. The alkaline earth metal may be introduced via a heat stability composition or may alternatively be pre-reacted with the organopolysiloxane having at least two alkenyl groups per molecule. The aryl group-containing siloxane compositions may be utilized as an encapsulating layer for a light emitting device.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 24, 2017
    Assignee: DOW CORNING CORPORATION
    Inventors: Randall Schmidt, Kasumi Takeuchi, Shengqing Xu
  • Publication number: 20160177061
    Abstract: An additive for a silicone encapsulant has the structure: Formula (I) wherein R1 and R2 are each —O—Si(R4)(R5)(R6) and each of R4, R5, and R6 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups, and wherein R3 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups. The additive is formed using a method that includes the step of reacting iron metal or an iron (III) compound with a hydroxyl functional organosiloxane. An encapsulant includes the additive and a polyorganosiloxane. The encapsulant can be utilized to form a device that includes an electronic component and the encapsulant disposed on the electronic component. The device is formed using a method that includes the step of disposing the encapsulant on the electronic device.
    Type: Application
    Filed: September 2, 2014
    Publication date: June 23, 2016
    Inventors: Don L Kleyer, Randall G. Schmidt, Adam C. Tomaslk, Shengqing Xu
  • Publication number: 20160027974
    Abstract: An aryl group-containing siloxane composition is formed by introducing an alkaline earth-metal as a part of the reaction product of an organopolysiloxane having at least two alkenyl groups per molecule and an organopolysiloxane having at least two silicon-bonded hydrogen atoms per molecule in the presence of a hydrosilylation catalyst, wherein at least one of the organopolysiloxanes includes an aryl group. The alkaline earth metal may be introduced via a heat stability composition or may alternatively be pre-reacted with the organopolysiloxane having at least two alkenyl groups per molecule. The aryl group-containing siloxane compositions may be utilized as an encapsulating layer for a light emitting device.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 28, 2016
    Inventors: Randall Schmidt, Kasumi Takeuchi, Shengqing Xu
  • Publication number: 20150189867
    Abstract: Provided in various embodiments are methods of loading solid microparticles and nanoparticles of silver, including silver-based compounds, on silicone particles to surface modify the silicone particles. The silver-loaded microparticles and silver-loaded nanoparticles can be dispersed or loaded into silicones for use in antimicrobial and other applications.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 9, 2015
    Applicant: Dow Corning Corporation
    Inventors: Laurie Kroupa, Donald Liles, Regina Malczewski, Shawn Mealey, Do-Lung Pan, Randall Schmidt, Nick Shephard, Christine Weber, Shengqing Xu
  • Publication number: 20140350176
    Abstract: The present invention relates to a method of preparing hydrophilic silicone gel adhesives by curing a silicone composition. The method includes forming the silicone composition by reacting a polyoxyethylene-organopolysiloxane copolymer having an average of at least 1 functional groups selected from, unsaturated hydrocarbon, hydroxyl, silanol, or combinations thereof and a polyoxyethylene-organopolysiloxane copolymer as cross-linker having an average of at least 2 silicon-bonded hydrogen atoms per molecule in the presence of a catalyst. The polyoxyethylene-organopolysiloxane copolymers react via hydrosilylation or coupling reaction.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Applicant: Dow Corning Taiwan Inc.
    Inventors: Mark David Fisher, Roger A. Gibas, Laurie N. Kroupa, Kathryn E. Messner, Do-lung Pan, Randall G. Schmidt, Shengqing Xu
  • Publication number: 20140350278
    Abstract: The present invention relates to a process of making a polymerizable hybrid polysiloxane or a polymerizable hybrid siloxane. The process includes reacting an organopolysiloxane or organosiloxane having an average of at least 3 silicon hydride (SiH) groups per molecule, a polyoxyethylene, and a catalyst. The process also optionally includes adding a stabilizer, a catalytic inhibitor, a solvent, and an unsaturated reactant selected from substituted and unsubstituted unsaturated organic compounds.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Applicant: Dow Corning Taiwan Inc.
    Inventors: Mark David Fisher, Roger A. Gibas, Laurie N. Kroupa, Kathryn E. Messner, Do-Lung Pan, Randall G. Schmidt, Christine A. Weber, Shengqing Xu
  • Publication number: 20140291872
    Abstract: A gel has improved thermal stability and is the ultraviolet hydrosilylation reaction product of (A) an organopolysiloxane having an average of at least 0.1 silicon-bonded alkenyl group per molecule and (B) a cross-linker having an average of at least 2 silicon-bonded hydrogen atoms per molecule. (A) and (B) react via hydrosilylation in the presence of (C) a UV-activated hydrosilylation catalyst comprising at least one of platinum, rhodium, ruthenium, palladium, osmium, and iridium, and (D) a thermal stabilizer. The (D) thermal stabilizer is present in an amount of from about 0.01 to about 30 weight percent based on a total weight of (A) and (B) and having transparency to UV light sufficient for the ultraviolet hydrosilylation reaction product to form.
    Type: Application
    Filed: October 5, 2012
    Publication date: October 2, 2014
    Inventors: Brian R. Harkness, Malinda N. Howell, Daesup Hyun, Jing Jiang, John J. Kennan, Kent R. Larson, Randall G. Schmidt, Shengqing Xu
  • Publication number: 20140287247
    Abstract: A gel having improved thermal stability is the hydro silylation reaction product of (A) an organopolysiloxane having an average of at least 0.1 silicon-bonded alkenyl group per molecule and (B) a cross-linker having an average of at least 2 silicon-bonded hydrogen atoms per molecule. (A) and (B) react via hydrosilylation in the presence of (C) a hydrosilylation catalyst and (D) a heated reaction product of iron acetylacetonate. The iron acetylacetonate is present prior to heating in an amount of from about 0.05 to about 30 weight percent based on a total weight of (A) and (B). The gel is formed using a method that includes the steps of (I) heating the iron acetylacetonate to form the (D) heated reaction product of the iron acetylacetonate and (II) combining (A), (B), (C) and (D) to effect the hydrosilylation reaction of (A) and (B) in the presence of (C) and (D) to form the gel.
    Type: Application
    Filed: October 5, 2012
    Publication date: September 25, 2014
    Inventors: Matt D. Dowland, Daesup Hyun, John J. Kennan, Kent R. Larson, Randall G. Schmidt, Shengqing Xu
  • Patent number: 8696952
    Abstract: The present invention provides a method and apparatus for producing polymeric particles with pre-designed size, shape, morphology and composition, and more particularly the present invention uses a microfluidic polymerization reactor for producing same. The present invention disclosed herein provides a process for producing polymer particles with pre-selected shapes. The method includes injecting a first fluid comprising a polymerizable constituent with a controlled flow rate into a microfluidic channel and injecting a second fluid with a controlled flow rate into the microfluidic channel in which the second fluid mixes with the first fluid, the second fluid being immiscible with the first fluid so that the first fluid forms into droplets in the microfluidic channel. The microfluidic channel has pre-selected dimensions to give droplets of pre-selected size, morphology and shape.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 15, 2014
    Inventors: Eugenia Kumacheva, Shengqing Xu, Zhihong Nie, Min Seok Seo, Patrick Cameron Lewis, Hong Zhang
  • Patent number: 8334592
    Abstract: A thermal interface material includes a thermally conductive metal matrix and coarse polymeric particles dispersed therein. The composite can be used for both TIM1 and TIM2 applications in electronic devices.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: December 18, 2012
    Assignee: Dow Corning Corporation
    Inventors: Dorab Bhagwagar, Donald Liles, Nick Shephard, Shengqing Xu, Zuchen Lin, G. M. Fazley Elahee
  • Publication number: 20110129941
    Abstract: The present invention provides a method and apparatus for producing polymeric particles with pre-designed size, shape, morphology and composition, and more particularly the present invention uses a microfluidic polymerization reactor for producing same. The present invention disclosed herein provides a process for producing polymer particles with pre-selected shapes. The method includes injecting a first fluid comprising a polymerizable constituent with a controlled flow rate into a microfluidic channel and injecting a second fluid with a controlled flow rate into the microfluidic channel in which the second fluid mixes with the first fluid, the second fluid being immiscible with the first fluid so that the first fluid forms into droplets in the microfluidic channel. The microfluidic channel has pre-selected dimensions to give droplets of pre-selected size, morphology and shape.
    Type: Application
    Filed: April 25, 2005
    Publication date: June 2, 2011
    Inventors: Eugenia Kumacheva, Shengqing Xu, Zhihong Nie, Min Seok Seo, Patrick Cameron Lewis, Hong Zhang
  • Publication number: 20100328895
    Abstract: A composite includes a thermally conductive metal matrix and silicone particles dispersed therein. The composite can be used to form a thermal interface material in an electronic device. The composite can be used for both TIM1 and TIM2 applications.
    Type: Application
    Filed: September 5, 2008
    Publication date: December 30, 2010
    Inventors: Dorab Bhagwagar, Donald Liles, Nick Shephard, Shengqing Xu, Zuchen Lin, G.M. Fazley Elahee
  • Publication number: 20100208432
    Abstract: A thermal interface material includes a thermally conductive metal matrix and coarse polymeric particles dispersed therein. The composite can be used for both TIM1 and TIM2 applications in electronic devices.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 19, 2010
    Inventors: Dorab Bhagwagar, Donald Liles, Nick Shephard, Shengqing Xu, Zuchen Lin, G.M. Fazley Elahee