Patents by Inventor Shigenori Nakashizu

Shigenori Nakashizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170175003
    Abstract: There are provided a catalyst composition for producing hydrocarbons and a method for producing hydrocarbons which exhibit a high CO conversion rate, generates minimal amount of gaseous components, and is also capable of efficiently obtaining, from a syngas, a gasoline fraction which is selective for and rich in the components having a high octane number, such as aromatic, naphthenic, olefinic and branched paraffinic hydrocarbons, by using a Fischer-Tropsch synthesis catalyst that contains at least one type of metal exhibiting activity in Fischer-Tropsch reaction and manganese carbonate and a zeolite serving as a solid acid.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Kazuhito SATO, Shigenori NAKASHIZU
  • Patent number: 9656252
    Abstract: There are provided a catalyst composition for producing hydrocarbons and a method for producing hydrocarbons which exhibit a high CO conversion rate, generates minimal amount of gaseous components, and is also capable of efficiently obtaining, from a syngas, a gasoline fraction which is selective for and rich in the components having a high octane number, such as aromatic, naphthenic, olefinic and branched paraffinic hydrocarbons, by using a Fischer-Tropsch synthesis catalyst that contains at least one type of metal exhibiting activity in Fischer-Tropsch reaction and manganese carbonate and a zeolite serving as a solid acid.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: May 23, 2017
    Assignee: COSMO OIL CO., LTD.
    Inventors: Kazuhito Sato, Shigenori Nakashizu
  • Patent number: 8906222
    Abstract: The present invention relates to a management method for a wax fraction storage tank that stores a wax fraction produced by Fischer-Tropsch synthesis until the wax fraction is hydrocracked, the management method including maintaining the temperature inside the tank at 90° C. to 130° C. and maintaining the atmosphere inside the tank to be an inert gas atmosphere.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 9, 2014
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Nippon Oil Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Shigenori Nakashizu, Yutaka Miyata, Kazuhito Sato
  • Patent number: 8598063
    Abstract: A catalyst for FT synthesis which, in the FT method, is high in a CO conversion and small in the formation of a gaseous component and can stably perform an FT synthesis reaction and enhance the productivity of hydrocarbons, and a method for producing hydrocarbons using the catalyst, are provided. A catalyst for Fischer-Tropsch synthesis comprising a support containing manganese carbonate as a main component, wherein the support contains at least one metal having an activity to the Fischer-Tropsch reaction; and a method for producing hydrocarbons using this catalyst.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: December 3, 2013
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Kazuhito Sato, Shigenori Nakashizu
  • Publication number: 20130289145
    Abstract: The catalyst for FT synthesis comprises manganese carbonate containing from 10 to 25% by mass of silica in terms of an oxide on the basis of the mass of the catalyst, not more than 6% by mass of an organic binder on the basis of the mass of the catalyst, and from 0.5 to 5% by mass of ruthenium in terms of a metal on the basis of the mass of the catalyst, wherein the catalyst has a surface area of 100 to 210 m2/g and a pore volume of 0.1 to 0.6 ml/g.
    Type: Application
    Filed: January 24, 2012
    Publication date: October 31, 2013
    Inventors: Yasutomo Miura, Shigenori Nakashizu
  • Publication number: 20120208905
    Abstract: There are provided a catalyst composition for producing hydrocarbons and a method for producing hydrocarbons which exhibit a high CO conversion rate, generates minimal amount of gaseous components, and is also capable of efficiently obtaining, from a syngas, a gasoline fraction which is selective for and rich in the components having a high octane number, such as aromatic, naphthenic, olefinic and branched paraffinic hydrocarbons, by using a Fischer-Tropsch synthesis catalyst that contains at least one type of metal exhibiting activity in Fischer-Tropsch reaction and manganese carbonate and a zeolite serving as a solid acid.
    Type: Application
    Filed: December 7, 2010
    Publication date: August 16, 2012
    Inventors: Kazuhito Sato, Shigenori Nakashizu
  • Publication number: 20110112206
    Abstract: A catalyst for FT synthesis which, in the FT method, is high in a CO conversion and small in the formation of a gaseous component and can stably perform an FT synthesis reaction and enhance the productivity of hydrocarbons, and a method for producing hydrocarbons using the catalyst, are provided. A catalyst for Fischer-Tropsch synthesis comprising a support containing manganese carbonate as a main component, wherein the support contains at least one metal having an activity to the Fischer-Tropsch reaction; and a method for producing hydrocarbons using this catalyst.
    Type: Application
    Filed: May 15, 2009
    Publication date: May 12, 2011
    Applicant: COSMO OIL CO., LTD.
    Inventors: Kazuhito Sato, Shigenori Nakashizu
  • Publication number: 20100282328
    Abstract: The present invention relates to a management method for a wax fraction storage tank that stores a wax fraction produced by Fischer-Tropsch synthesis until the wax fraction is hydrocracked, the management method including maintaining the temperature inside the tank at 90° C. to 130° C. and maintaining the atmosphere inside the tank to be an inert gas atmosphere.
    Type: Application
    Filed: December 11, 2008
    Publication date: November 11, 2010
    Inventors: Shigenori Nakashizu, Yutaka Miyata, Kazuhito Sato
  • Patent number: 7612013
    Abstract: An object of the present invention is to provide a catalyst which, in the FT process, exhibits a high chain growth probability, and a high catalytic activity, can stably and smoothly promote the reaction, exhibits a high productivity of C5+, and can efficiently produce liquid hydrocarbons, and a process therefore. The invention relates to a hydrocarbon-producing catalyst obtainable by supporting a ruthenium compound on a support composed of a manganese oxide and an aluminum oxide, and which satisfies at least one of characteristics (1) and (2): (1) the catalyst being treated with an aqueous alkaline solution and subsequently subjected to calcination treatment in the air at 150 to 500° C., (2) the aluminum oxide being an aluminum oxide wherein pore volume formed by pores having a pore diameter of 8 nm or more accounts for 50% or more of total pore volume.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: November 3, 2009
    Assignees: Japan Oil, Gas and Metals National Corporation, Cosmo Oil Co., Ltd.
    Inventors: Kazuhito Sato, Shigenori Nakashizu, Osamu Iwamoto, Hiroaki Otsuka
  • Publication number: 20080064769
    Abstract: An object of the present invention is to provide a catalyst which, in the FT process, exhibits a high chain growth probability, and a high catalytic activity, can stably and smoothly promote the reaction, exhibits a high productivity of C5+, and can efficiently produce liquid hydrocarbons, and a process therefor. The invention relates to a hydrocarbon-producing catalyst obtainable by supporting a ruthenium compound on a support composed of a manganese oxide and an aluminum oxide, and which satisfies at least one of characteristics (1) and (2): (1) the catalyst being treated with an aqueous alkaline solution and subsequently subjected to calcination treatment in the air at 150 to 500° C., (2) the aluminum oxide being an aluminum oxide wherein pore volume formed by pores having a pore diameter of 8 nm or more accounts for 50% or more of total pore volume.
    Type: Application
    Filed: February 23, 2005
    Publication date: March 13, 2008
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, COSMO OIL CO., LTD.
    Inventors: Kazuhito Sato, Shigenori Nakashizu, Osamu Iwamoto, Hiroaki Otsuka
  • Patent number: 6924316
    Abstract: A method for producing hydrocarbons, comprising: (I) subjecting to a reduction treatment a catalyst comprising a carrier having provided thereon: 0.1 to 10% by mass of at least one metal selected from an alkali metal, an alkaline earth metal, a rare earth metal and the Group III in the periodic table and 1 to 30% by mass of ruthenium, each based on the catalyst weight, the carrier comprising an aluminum oxide and a manganese oxide having an average number of charges of manganese of exceeding Mn2+, and the catalyst having a specific surface area of from 60 to 350 m2/g and a bulk density of from 0.8 to 1.8 g/ml; (II) dispersing the catalyst in liquid hydrocarbons in a concentration of from 1 to 50 w/v %; and (III) bringing the catalyst into contact with a gas mixture comprising hydrogen and carbon monoxide at a pressure of from 1 to 10 MPa, and (i) at a reaction temperature of from 170 to 300° C.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: August 2, 2005
    Assignees: Japan National Oil Corporation, Cosmo Oil Co., Ltd.
    Inventors: Osamu Iwamoto, Shigenori Nakashizu, Kinjiro Saito, Takashi Suzuki
  • Publication number: 20040157938
    Abstract: A method for producing hydrocarbons, comprising: (I) subjecting to a reduction treatment a catalyst comprising a carrier having provided thereon: 0.1 to 10% by mass of at least one metal selected from an alkali metal, an alkaline earth metal, a rare earth metal and the Group III in the periodic table and 1 to 30% by mass of ruthenium, each based on the catalyst weight, the carrier comprising an aluminum oxide and a manganese oxide having an average number of charges of manganese of exceeding Mn2+, and the catalyst having a specific surface area of from 60 to 350 m2/g and a bulk density of from 0.8 to 1.8 g/ml; (II) dispersing the catalyst in liquid hydrocarbons in a concentration of from 1 to 50 w/v %; and (III) bringing the catalyst into contact with a gas mixture comprising hydrogen and carbon monoxide at a pressure of from 1 to 10 MPa, and (i) at a reaction temperature of from 170 to 300° C.
    Type: Application
    Filed: October 27, 2003
    Publication date: August 12, 2004
    Inventors: Osamu Iwamoto, Shigenori Nakashizu, Kinjiro Saito, Takashi Suzuki
  • Patent number: 5494875
    Abstract: A carrier suitable for preparing a catalyst for hydrofining hydrocarbon oils which has a high ability to eliminate metals contained in the hydrocarbon oils and an improved metal tolerance as well as said catalyst are provided.The carrier of the present invention is an alumina-containing carrier which shows a peak at 2.theta. of 27.degree. in the powder X-ray diffraction pattern when carrying Mo and Co or one or more other metals selected from among metals of the groups VIA and VIII in the periodic table together with Mo and Co.
    Type: Grant
    Filed: July 13, 1993
    Date of Patent: February 27, 1996
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Kazushi Usui, Shigenori Nakashizu, Kentarou Ishida, Eiko Kogure
  • Patent number: 5444033
    Abstract: A catalyst composition for hydrotreating of hydrocarbon oils is disclosed. The composition comprises a Group VIB metal in an amount of 5-30% by weight, as oxide, and a Group VIII metal in an amount of 1-10% by weight, as oxide, wherein said Group VIB metal and said Group VIII metal are distributed with a concentration gradient which becomes higher from the surface toward the center of a catalyst particle according to the formulas, 0.9>h.sub.2 /h.sub.1 .gtoreq.0, wherein h.sub.1 is the Group VIB metal concentration at the center of the catalyst particle and h.sub.2 at the outermost surface of the catalyst particle, and 0.9>h.sub.4 /h.sub.3 .gtoreq.0, wherein h.sub.3 is the Group VIII metal concentration at the center of the catalyst particle and h.sub.4 at the outermost surface of the catalyst particle.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: August 22, 1995
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Kazushi Usui, Shigenori Nakashizu, Kentarou Ishida
  • Patent number: 4981832
    Abstract: A catalyst composition for the hydrogenation of heavy hydrocarbon oil, where the catalyst composition comprises at least one active ingredient for hydrogenation supported on a porous alumina carrier and has the following characteristics: (1) the total volume of the pores therein is from 0.4 to 1.0 ml/g; (2) the mean pore diameter of pores having a pore diameter of from 5 to 400 .ANG. is from 60 to 140 .ANG.; (3) the volume of pores having a pore size within .+-.25% of the mean pore diameter of pores having a pore diameter of from 5 to 400 .ANG. is from 60 to 98% of the volume of pores having a pore diameter of from 5 to 400 .ANG.; (4) the volume of pores having a pore diameter of from 400 to 5000 .ANG. is from 2 to 9% of the total volume of the entire pores; (5) the ratio (mm.sup.2 /mm.sup.3) of the outer surface area of a molded catalyst powder to the volume thereof is from 4 to 8; and (6) all points in the interior of the molded catalyst particle are positioned within 0.05 to 0.
    Type: Grant
    Filed: July 3, 1989
    Date of Patent: January 1, 1991
    Assignee: Research Association for Residual Oil Processing
    Inventors: Kinya Tawara, Kazuyoshi Kudoh, Kazushi Usui, Tomohiro Yoshinari, Shigenori Nakashizu
  • Patent number: 4368337
    Abstract: A process is described for converting glycol dialkyl ether without substantial formation of olefin oligomers by reaction with water, comprising reacting a feed glycol di-tertiary alkyl ether represented by structural formula (A) with water using a strongly acidic cation-exchange resin as a catalyst and a reaction temperature of from 40.degree. C. to 150.degree. C. under a pressure of from 1 to 70 kg/cm.sup.2 (absolute pressure) in a molar ratio of water/feed glycol di-tertiary alkyl ether represented by the structural formula (A) of from 0.
    Type: Grant
    Filed: March 30, 1981
    Date of Patent: January 11, 1983
    Assignee: Maruzen Oil Co., Ltd.
    Inventors: Kinya Tawara, Hiroki Kamiyama, Shigenori Nakashizu, Takashi Kaneko, Tadahiro Wakui, Tadashi Matsumoto