Patents by Inventor Shigenori Tsuji

Shigenori Tsuji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126215
    Abstract: An atomic oven includes a cartridge and a main body. The cartridge includes a holder that accommodates an atom source; and a capillary nozzle. The main body includes: a housing in which the cartridge is installed; a button heater; an access opening for removing the cartridge from the main body and placing the cartridge into the main body, the access opening being provided on the atmosphere side, which is outside the main body; and a passage from the access opening to the housing. The cartridge is inserted into the main body through the access opening and is installed in the housing. The atom source is heated by the button heater, whereby atomic gas generated from the atom source is emitted as an atom beam to the vacuum side, which is outside the main body.
    Type: Application
    Filed: February 10, 2022
    Publication date: April 18, 2024
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Publication number: 20240114611
    Abstract: By heating a high-temperature bath with a heater, atomic gas is generated in the high-temperature bath from an atomic source. A magneto-optical trap is realized by a laser beam reflected by a right-angled conical mirror and a magnetic field formed by a magnetic field generator, and the atomic gas is confined by using the magneto-optical trap and cooled. The cooled atoms are output from an opening to the outside of a slow atom beam generator by a laser beam, which is a push laser beam. A slow atomic beam is thereby formed.
    Type: Application
    Filed: November 8, 2021
    Publication date: April 4, 2024
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Patent number: 11929754
    Abstract: There is a need to maintain or enhance the magnetic field correction accuracy of a physics package while making the physics package more compact and portable. A triaxial magnetic field correction coil is provided inside a vacuum chamber surrounding a clock transition space having atoms disposed therein. The triaxial magnetic field correction coil is formed into a shape such that it is possible to correct, for magnetic field components of three axial directions passing through the clock transition space, a constant term, a first order spatial derivative term, a second order spatial derivative term, a third or higher order spatial derivative term, or some given combination of these terms. The triaxial magnetic field correction coil can be used in, for example, a physics package for an optical lattice clock.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: March 12, 2024
    Assignees: JEOL Ltd., RIKEN
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Patent number: 11894854
    Abstract: An optical lattice clock includes a clock transition space having disposed therein an atom group trapped in an optical lattice, and a triaxial magnetic field correction coil for correcting the magnetic field of the clock transition space. Additionally, in a correction space that includes the clock transition space and is larger than the clock transition space, a photoreceiver promotes the clock transition of the atom group trapped in the optical lattice and acquires a clock transition frequency distribution for the correction space. Further, a corrector corrects the magnetic field of the triaxial magnetic field correction coil on the basis of the frequency distribution measured by the photo receiver.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 6, 2024
    Assignees: JEOL Ltd., RIKEN
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Publication number: 20230229115
    Abstract: A physical package is provided with: a MOT device; an optical chamber which constitutes an optical lattice formation portion; and a vacuum chamber which surrounds these components and has a substantially cylindrical shape. The MOT device is arranged along the beam axis of an atomic beam and traps an atom cluster. The optical lattice formation portion uses optical lattice light that enters therein to form an optical lattice in a cavity, confines the atom cluster trapped by the MOT device in the optical lattice, and transfers, along the X-axis which is a movement axis perpendicular to the beam axis, the atom cluster to a clock transition space which facilitates clock transition. The central axis of the cylinder of the main body of the vacuum chamber passes through the clock transition space, and is set to be substantially parallel with the beam axis.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 20, 2023
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Publication number: 20230216513
    Abstract: An optical lattice clock includes a clock transition space having disposed therein an atom group trapped in an optical lattice, and a triaxial magnetic field correction coil for correcting the magnetic field of the clock transition space. Additionally, in a correction space that includes the clock transition space and is larger than the clock transition space, a photoreceiver promotes the clock transition of the atom group trapped in the optical lattice and acquires a clock transition frequency distribution for the correction space. Further, a corrector corrects the magnetic field of the triaxial magnetic field correction coil on the basis of the frequency distribution measured by the photo receiver.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 6, 2023
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Publication number: 20230134841
    Abstract: There is a need to maintain or enhance the magnetic field correction accuracy of a physics package while making the physics package more compact and portable. A triaxial magnetic field correction coil provided inside a vacuum chamber surrounding a clock transition space having atoms disposed therein. The triaxial magnetic field correction coil formed into a shape such that it is possible to correct, for magnetic field components of three axial directions passing through the clock transition space, a constant term, a first order spatial derivative term, a second order spatial derivative term, a third or higher order spatial derivative term, or some given combination of these terms. The triaxial magnetic field correction coil can be used in, for example, a physics package for an optical lattice clock.
    Type: Application
    Filed: March 30, 2021
    Publication date: May 4, 2023
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Publication number: 20230120920
    Abstract: A tri-axial magnetic field correction coil includes a first coil group and a second coil group with respect to an X-axis direction that passes through a clock transition space in which atoms are disposed. The first coil group is a Helmholtz-type coil composed in a point-symmetrical shape around the clock transition space. The second coil group is composed in a point-symmetrical shape around the clock transition space with respect to the X-axis direction, and is a non-Helmholtz-type coil that differs from the first coil group in terms of coil size, coil shape, or distance between coils.
    Type: Application
    Filed: March 30, 2021
    Publication date: April 20, 2023
    Inventors: Shigenori Tsuji, Masao Takamoto, Hidetoshi Katori
  • Patent number: 10775456
    Abstract: A sample pipe is provided in a sample temperature control pipe. A detection coil is provided in a low-temperature airtight chamber and configured to irradiate a sample with a high-frequency magnetic field. A room-temperature shield is provided on an outer circumferential surface of the sample temperature control pipe or on an inner circumferential surface thereof, and is configured to block irradiation of the high-frequency magnetic field from the detection coil from reaching a region other than an observation object. A low-temperature shield is provided in an airtight chamber and between the detection coil and the room-temperature shield and is configured to block irradiation of the high-frequency magnetic field from the detection coil from reaching the room-temperature shield.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: September 15, 2020
    Assignee: JEOL Ltd.
    Inventors: Katsuyuki Toshima, Shigenori Tsuji, Shinji Nakamura, Fumio Hobo, Takeshi Tsukada, Akifumi Nomura
  • Patent number: 10705164
    Abstract: A pair of detection coils, one coil provided on each side of a sample container across the width of the sample container. The detection coil is made of a superconductor and has an electric circuit pattern capable of detecting a magnetic resonance signal from a sample. The detection coil includes a lateral component intersectional to a static magnetic field H0 and having a part disposed at a position spaced away from a detection region, as compared to the remaining part.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 7, 2020
    Assignee: JEOL Ltd.
    Inventors: Fumio Hobo, Katsuyuki Toshima, Shinji Nakamura, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Patent number: 10571533
    Abstract: A manufacturing method includes forming a superconductive thin-film layer on a substrate and processing the superconductive thin-film layer into a shape of a detection coil for magnetic resonance measurement. Accordingly, a superconductive thin-film layer having the detection coil shape can be formed. The method further includes irradiating the shape-processed superconductive thin-film layer with ions. Accordingly, lattice defects serving as pinning can be formed in the superconductive thin-film layer.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: February 25, 2020
    Assignee: JEOL Ltd.
    Inventors: Shigetoshi Oshima, Shigenori Tsuji
  • Patent number: 10539634
    Abstract: A manufacturing method includes forming a superconductive thin-film layer on a substrate and processing the superconductive thin-film layer into a shape of a detection coil for magnetic resonance measurement. Accordingly, a superconductive thin-film layer having the detection coil shape can be formed. The method further includes irradiating the shape-processed superconductive thin-film layer with ions. Accordingly, lattice defects serving as pinning can be formed in the superconductive thin-film layer.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: January 21, 2020
    Assignee: JEOL Ltd.
    Inventors: Shigetoshi Oshima, Shigenori Tsuji
  • Publication number: 20190331747
    Abstract: A sample pipe is provided in a sample temperature control pipe. A detection coil is provided in a low-temperature airtight chamber and configured to irradiate a sample with a high-frequency magnetic field. A room-temperature shield is provided on an outer circumferential surface of the sample temperature control pipe or on an inner circumferential surface thereof, and is configured to block irradiation of the high-frequency magnetic field from the detection coil from reaching a region other than an observation object. A low-temperature shield is provided in an airtight chamber and between the detection coil and the room-temperature shield and is configured to block irradiation of the high-frequency magnetic field from the detection coil from reaching the room-temperature shield.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 31, 2019
    Inventors: Katsuyuki Toshima, Shigenori Tsuji, Shinji Nakamura, Fumio Hobo, Takeshi Tsukada, Akifumi Nomura
  • Patent number: 10114089
    Abstract: A sample tube is arranged in a sample temperature adjusting pipe, and a temperature adjustment gas is supplied. A vacuum vessel is formed with the sample temperature adjusting pipe and an outer wall body, and a detection coil and the like to be placed in a cooling state are arranged in the vacuum vessel. A sealed section between the sample temperature adjusting pipe and the outer wall body is sealed by a sealing structure. The sealing structure includes a high-vacuum O-ring and a low-temperature O-ring. The high-vacuum O-ring has characteristics for sealing the sealed section in a regular temperature region. The regular temperature region is a temperature region excluding a low temperature region, and the low temperature region is a temperature region including a lower limit in a possible temperature adjustment range of the temperature adjustment gas. The low-temperature O-ring has characteristics for sealing the sealed section in the low temperature region.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: October 30, 2018
    Assignee: JEOL Ltd.
    Inventors: Katsuyuki Toshima, Shinji Nakamura, Shigenori Tsuji
  • Patent number: 10073153
    Abstract: A device for attaching and detaching a cryogenic probe to and from a nuclear magnetic resonance (NMR) spectrometer. The device permits the probe to be loaded in the spectrometer in a shortened time and achieves high measurement throughput. The device has loading platforms (11-1, 11-2) on which cryogenic probes (P1, P2) are loaded. Each loading platform has a horizontal drive mechanism, a vertical drive mechanism, and a spacing mechanism. The device further includes probe cooling devices (14-1, 14-2) for circulating a refrigerant to and from the cryogenic probes (P1, P2) via transfer tubes (12-1, 12-2) made of a flexible material, thus cooling the probes (P1, P2). A temperature-controlled gas feeder (18) supplies a temperature variable gas for temperature adjustment to the probes (P1, P2). A vacuum pumping system (15) evacuates the interiors of the probes (P1, P2) via vacuum pipes (17-1, 17-2) made of a flexible material.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: September 11, 2018
    Assignee: JEOL Ltd.
    Inventors: Masanori Hirose, Yoshiaki Yamakoshi, Masahide Nishiyama, Shinji Nakamura, Katsuyuki Toshima, Fumio Hobo, Terumasa Okada, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Publication number: 20180024207
    Abstract: A manufacturing method includes forming a superconductive thin-film layer on a substrate and processing the superconductive thin-film layer into a shape of a detection coil for magnetic resonance measurement. Accordingly, a superconductive thin-film layer having the detection coil shape can be formed. The method further includes irradiating the shape-processed superconductive thin-film layer with ions. Accordingly, lattice defects serving as pinning can be formed in the superconductive thin-film layer.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Inventors: Shigetoshi Oshima, Shigenori Tsuji
  • Publication number: 20170336485
    Abstract: A pair of detection coils, one coil provided on each side of a sample container across the width of the sample container. The detection coil is made of a superconductor and has an electric circuit pattern capable of detecting a magnetic resonance signal from a sample. The detection coil includes a lateral component intersectional to a static magnetic field H0 and having a part disposed at a position spaced away from a detection region, as compared to the remaining part.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 23, 2017
    Inventors: Fumio Hobo, Katsuyuki Toshima, Shinji Nakamura, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Publication number: 20170205479
    Abstract: A sample tube is arranged in a sample temperature adjusting pipe, and a temperature adjustment gas is supplied. A vacuum vessel is formed with the sample temperature adjusting pipe and an outer wall body, and a detection coil and the like to be placed in a cooling state are arranged in the vacuum vessel. A sealed section between the sample temperature adjusting pipe and the outer wall body is sealed by a sealing structure. The sealing structure includes a high-vacuum O-ring and a low-temperature O-ring. The high-vacuum O-ring has characteristics for sealing the sealed section in a regular temperature region. The regular temperature region is a temperature region excluding a low temperature region, and the low temperature region is a temperature region including a lower limit in a possible temperature adjustment range of the temperature adjustment gas. The low-temperature O-ring has characteristics for sealing the sealed section in the low temperature region.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 20, 2017
    Inventors: Katsuyuki Toshima, Shinji Nakamura, Shigenori Tsuji
  • Patent number: 9494663
    Abstract: An NMR spectrometer and method in the following three steps are performed. (1) An external magnetic field is set to H0+?H (where 4H>0). When the detection coil made of the superconducting material is still in a normal state, a magnetic field stronger than the ultimate target static magnetic field strength H0 by ?H is applied to the detection coil. (2) The detection coil made of the superconducting material is cooled down to T0 lower than its critical temperature Tc to bring the coil into a superconducting state while the external magnetic field H0+?H is applied to the detection coil. (3) The external magnetic field is lowered from H0+?H to H0 such that the applied external magnetic field is decreased by ?H while the detection coil is kept in the superconducting state.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: November 15, 2016
    Assignee: JEOL Ltd.
    Inventors: Shigenori Tsuji, Fumio Hobo, Ryoji Tanaka, Hiroto Suematsu
  • Publication number: 20150168518
    Abstract: A device for attaching and detaching a cryogenic probe to and from a nuclear magnetic resonance (NMR) spectrometer. The device permits the probe to be loaded in the spectrometer in a shortened time and achieves high measurement throughput. The device has loading platforms (11-1, 11-2) on which cryogenic probes (P1, P2) are loaded. Each loading platform has a horizontal drive mechanism, a vertical drive mechanism, and a spacing mechanism. The device further includes probe cooling devices (14-1, 14-2) for circulating a refrigerant to and from the cryogenic probes (P1, P2) via transfer tubes (12-1, 12-2) made of a flexible material, thus cooling the probes (P1, P2). A temperature-controlled gas feeder (18) supplies a temperature variable gas for temperature adjustment to the probes (P1, P2). A vacuum pumping system (15) evacuates the interiors of the probes (P1, P2) via vacuum pipes (17-1, 17-2) made of a flexible material.
    Type: Application
    Filed: November 18, 2014
    Publication date: June 18, 2015
    Inventors: Masanori Hirose, Yoshiaki Yamakoshi, Masahide Nishiyama, Shinji Nakamura, Katsuyuki Toshima, Fumio Hobo, Terumasa Okada, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu