Patents by Inventor Shigeyuki Gotoh

Shigeyuki Gotoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10072323
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: September 11, 2018
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Patent number: 9399809
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: July 26, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Publication number: 20160024627
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Inventors: Shinichi TERAOKA, Masaaki KOBAYASHI, Yuuji KOYAMA, Junichi HAMADA, Norihiro KANNO, Yoshiharu INOUE, Ken KIMURA, Jun TAKAHASHI, Shigeyuki GOTOH
  • Publication number: 20140294660
    Abstract: This hot-rolled ferritic stainless steel sheet contains, in terms of % by mass: 0.0150% or less of C, 0.01% to 2.00% of Si, 0.01% to 2.00% of Mn, less than 0.040% of P, 0.010% or less of S, 10.0% to 30.0% of Cr, 0.001% to 0.100% of Al, and 0.0200% or less of N, with a balance being Fe and unavoidable impurities, wherein in a cross section in a range of ¼ to ¾ of a sheet thickness, a length L of all crystal grain boundaries having orientation differences of 1° or more to less than 180° and a length La of subgrain boundaries having orientation differences of 1° or more to less than 15° satisfy a relation of La/L?0.20.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 2, 2014
    Inventors: Ken Kimura, Junichi Hamada, Jun Takahashi, Yuuji Koyama, Shigeyuki Gotoh
  • Publication number: 20130306204
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Application
    Filed: February 8, 2012
    Publication date: November 21, 2013
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Patent number: 5062306
    Abstract: A torque detecting apparatus comprises an annular bobbinless sensor coil disposed on a rotatable shaft, and a position adjustable, non-ferromagnetic metal core member disposed adjacent the sensor coil. When the shaft is twisted, the core member moves in a hollow space defined by the sensor coil to thereby change inductance thereof in accordance with angular displacement between the sensor coil and the core member. A detecting part is disposed in opposition to a solenoid coil wound on the shaft with a gap therebetween for detecting the angular displacement in terms of a change in an oscillation frequency. A sensor set is constituted by the sensor coil and the metal core. A pair of sensor sets may be disposed, wherein one sensor set is so connected that inductance of the associated sensor coil is decreased while the other sensor set is so connected that inductance of the associated sensor coil is increased. Difference or ratio between the two oscillation frequencies may be inputted to a resonance circuit.
    Type: Grant
    Filed: April 17, 1990
    Date of Patent: November 5, 1991
    Assignee: Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Shigeyuki Gotoh, Kazunori Yokota, Isao Suzuki