Patents by Inventor Shih-Chen Wang

Shih-Chen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110310669
    Abstract: A non-volatile memory system includes one or more non-volatile memory cells. Each non-volatile memory cell comprises a floating gate, a coupling device, a first floating gate transistor, and a second floating gate transistor. The coupling device is located in a first conductivity region. The first floating gate transistor is located in a second conductivity region, and supplies read current sensed during a read operation. The second floating gate transistor is located in a third conductivity region. Such non-volatile memory cell further comprises two transistors for injecting negative charge into the floating gate during a programming operation, and removing negative charge from the second floating gate transistor during an erase operation. The floating gate is shared by the first floating gate transistor, the coupling device, and the second floating gate transistor, and extends over active regions of the first floating gate transistor, the coupling device and the second floating gate transistor.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 22, 2011
    Inventors: Wen-Hao Ching, Shih-Chen Wang, Ching-Sung Yang
  • Publication number: 20110299336
    Abstract: A single-polysilicon layer non-volatile memory having a floating gate transistor, a program gate and a control gate is provided. The floating gate transistor has a floating gate and a tunneling dielectric layer. The floating gate is disposed on a substrate. The tunneling dielectric layer is disposed between the floating gate and the substrate. The program gate, the control gate and the erase gate are respectively disposed in the substrate under the floating gate separated by the tunneling dielectric layer. Therefore, during a program operation and an erase operation, charges are injected in and expelled out through different regions of the tunneling dielectric layer, so as to increase reliability of the non-volatile memory.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Wen-Hao Ching, Yen-Hsin Lai, Ching-Sung Yang
  • Publication number: 20110242893
    Abstract: A non-volatile memory unit cell includes a first transistor pair and first and second control gates. The first transistor pair includes first and second transistors that are connected in series and of the same type. The first and second transistors have a first floating polysilicon gate and a second floating polysilicon gate, respectively. The first control gate is coupled to the first floating polysilicon gate through a tunneling junction and the second control gate is coupled to the second floating polysilicon gate through another tunneling junction.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Wen-Hao Ching, Yen-Hsin Lai, Hau-Yan Lu, Ching-Sung Yang
  • Publication number: 20110024823
    Abstract: A non-volatile semiconductor memory device includes a substrate, a first gate formed on a first region of a surface of the substrate, a second gate formed on a second region of the surface of the substrate, a charge storage layer filled between the first gate and the second gate, a first diffusion region formed on a first side of the charge storage layer, and a second diffusion region formed opposite the charge storage layer from the first diffusion region. The first region and the second region are separated by a distance sufficient for forming a self-aligning charge storage layer therebetween.
    Type: Application
    Filed: December 8, 2009
    Publication date: February 3, 2011
    Inventors: Hau-Yan Lu, Shih-Chen Wang, Ching-Sung Yang
  • Patent number: 7872898
    Abstract: A one time programmable read only memory disposed on a substrate of a first conductive type is provided. A gate structure is disposed on the substrate. A first doped region and a second doped region are disposed in the substrate at respective sides of the gate structure, and the first doped region and the second doped region are of a second conductive type which is different from the first conductive type. A third doped region of the first conductive type is disposed in the substrate and is adjacent to the second doped region, and a junction is formed between the third doped region and the second doped region. A metal silicide layer is disposed on the substrate. An clearance is formed in the metal silicide layer, and the clearance at least exposes the junction.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 18, 2011
    Assignee: eMemory Technology Inc.
    Inventors: Wen-Hao Ching, Shih-Chen Wang, Tsung-Mu Lai
  • Publication number: 20100265755
    Abstract: A one time programmable read only memory disposed on a substrate of a first conductive type is provided. A gate structure is disposed on the substrate. A first doped region and a second doped region are disposed in the substrate at respective sides of the gate structure, and the first doped region and the second doped region are of a second conductive type which is different from the first conductive type. A third doped region of the first conductive type is disposed in the substrate and is adjacent to the second doped region, and a junction is formed between the third doped region and the second doped region. A metal silicide layer is disposed on the substrate. An clearance is formed in the metal silicide layer, and the clearance at least exposes the junction.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Applicant: eMemory Technology Inc.
    Inventors: Wen-Hao Ching, Shih-Chen Wang, Tsung-Mu Lai
  • Patent number: 7768059
    Abstract: A non-volatile single-poly memory device is disclosed. The non-volatile single-poly memory device includes two mirror symmetric unit cells, which is capable of providing improved data correctness. Further, the non-volatile single-poly memory device is operated at low voltages and is fully compatible with logic processes.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: August 3, 2010
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Ming-Chou Ho, Shih-Jye Shen
  • Publication number: 20100148238
    Abstract: A non-volatile memory is formed on a substrate. The non-volatile memory includes an isolation structure, a floating gate, and a gate dielectric layer. The isolation structure is disposed in the substrate to define an active area. The floating gate is disposed on the substrate and crosses over the active area. The gate dielectric layer is disposed between the floating gate and the substrate. The floating gate includes a first region and a second region. An energy band of the second region is lower than an energy band of the first region, so that charges stored in the floating gate are away from an overlap region of the floating gate and the gate dielectric layer.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Shih-Chen Wang, Wen-Hao Ching
  • Patent number: 7715241
    Abstract: A present invention relates to a method of erasing a P-channel non-volatile memory is provided. This P-channel non-volatile memory includes a select transistor and a memory cell connected in series and disposed on a substrate. In the method of erasing the P-channel non-volatile memory, holes are injected into a charge storage structure by substrate hole injection effect. Hence, the applied operational voltage is low, so the power consumption is lowered, and the efficiency of erasing is enhanced. As a result, an operational speed of the memory is accelerated, and the reliability of the memory is improved.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 11, 2010
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Sheng-Yu Wang, Cheng-Yen Shen
  • Publication number: 20100073985
    Abstract: A method for operating a one-time programmable read-only memory (OTP-ROM) is provided. The OTP-ROM comprises a first gate and a second gate respectively disposed on a gate dielectric layer between a first doped region and a second doped region on a substrate, wherein the first gate is adjacent to the first doped region and coupled to the first doped region, the second gate is adjacent to the second doped region, the first gate is electrically coupled grounded, and the OTP-ROM is programmed through a breakdown effect. The method comprises a step of programming the OTP-ROM under the conditions that a voltage of the second doped region is higher than a voltage of the first doped region, the voltage of the second gate is higher than a threshold voltage to pass the voltage of the second doped region, and the first doped region and the substrate are at a reference voltage.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Tsung-Mu Lai, Shao-Chang Huang, Wen-hao Ching, Chun-Hung Lu, Shih-Chen Wang, Ming-Chou Ho
  • Publication number: 20100006924
    Abstract: A one-time programmable read-only memory (OTP-ROM) including a substrate, a first doped region, a second doped region, a third doped region, a first dielectric layer, a select gate, a second dielectric layer, a first channel, a second channel and a silicide layer is provided. The first doped region, the second doped region and the third doped region are disposed apart in a substrate. The first dielectric layer is disposed on the substrate between the first doped region and the second doped region. The select gate is disposed on the first dielectric layer. The second dielectric layer is disposed on the substrate between the second doped region and the third doped region. The silicide layer is disposed on the first doped region, the second doped region and the third doped region. The OTP-ROM stores data by a punch-through effect occurring between the second doped region and the third doped region.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 14, 2010
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Hsin-Ming Chen, Shao-Chang Huang, Shih-Chen Wang, Tsung-Mu Lai, Ming-Chou Ho, Chrong-Jung Lin
  • Publication number: 20090283814
    Abstract: A non-volatile memory cell includes an ion well of a semiconductor substrate; a first half-transistor having a firs select gate, a first diffusion region in the ion well, and a first gate dielectric layer between the first select gate and the ion well; a second half-transistor disposed adjacent to the first half-transistor, wherein the second half-transistor has a second select gate spaced apart from the first select gate, a second diffusion region in the ion well, and a second gate dielectric layer between the second select gate and the ion well. The first and second half-transistors are mirror-symmetrical to each other.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Inventors: Hsin-Ming Chen, Shao-Chang Huang, Shih-Chen Wang, Wen-Hao Ching, Chrong-Jung Lin
  • Publication number: 20090244985
    Abstract: A present invention relates to a method of erasing a P-channel non-volatile memory is provided. This P-channel non-volatile memory includes a select transistor and a memory cell connected in series and disposed on a substrate. In the method of erasing the P-channel non-volatile memory, holes are injected into a charge storage structure by substrate hole injection effect. Hence, the applied operational voltage is low, so the power consumption is lowered, and the efficiency of erasing is enhanced. As a result, an operational speed of the memory is accelerated, and the reliability of the memory is improved.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Sheng-Yu Wang, Cheng-Yen Shen
  • Publication number: 20080296701
    Abstract: A one-time programmable read-only memory (OTP-ROM) including a substrate, a first doped region, a second doped region, a gate dielectric layer, a first gate and a second gate. The substrate is of a first conductive type. The first doped region and the second doped region are of a second conductive type and are separately disposed in the substrate. The gate dielectric layer is disposed on the substrate between the first doped region and the second doped region. The first gate and the second gate are disposed on the gate dielectric layer, respectively. The first gate is adjacent to the first doped region, while the second gate is adjacent to the second doped region. Here, the first gate is electrically coupled grounded, and the OTP-ROM is programmed through a breakdown effect.
    Type: Application
    Filed: December 14, 2007
    Publication date: December 4, 2008
    Applicant: eMemory Technology Inc.
    Inventors: Tsung-Mu Lai, Shao-Chang Huang, Wen-hao Ching, Chun-Hung Lu, Shih-Chen Wang, Ming-Chou Ho
  • Patent number: 7447082
    Abstract: A single-poly non-volatile memory cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly non-volatile memory cell includes an ion well, a gate formed on the ion well, a gate dielectric layer between the gate and the ion well, a dielectric stack layer on sidewalls of the gate, a source doping region and a drain doping region. The dielectric stack layer includes a first oxide layer deposited on the sidewalls of the gate and extends to the ion well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: November 4, 2008
    Assignee: eMemory Technology Inc.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Patent number: 7433243
    Abstract: A non-volatile memory formed on a first conductive type substrate is provided. The non-volatile memory includes a gate, a second conductive type drain region, a charge storage layer, and a second conductive type first lightly doped region. The gate is formed on the first conductive type substrate. The second conductive type drain region is formed in the first conductive type substrate at the first side of the gate. The charge storage layer is formed on the first conductive type substrate at the first side of the gate and between the second conductive type drain region and the gate. The second conductive type first lightly doped region is formed in the first conductive type substrate at the second side of the gate. The second side is opposite to the first side.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: October 7, 2008
    Assignee: eMemory Technology Inc.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20080138956
    Abstract: A semiconductor device formed on a first conductive type substrate is provided. The device includes a gate, a second conductive type drain region, a second conductive type source region, and a second conductive type first lightly doped region. The gate is formed on the first conductive type substrate. The second conductive type drain region and the second conductive type source region are formed in the first conductive type substrate at both sides of the gate. The second conductive type first lightly doped region is formed in the first conductive type substrate between the gate and the second conductive type source region.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 12, 2008
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070296034
    Abstract: A single-poly SOI memory cell includes a PMOS select transistor serially connected with a floating-gate PMOS transistor on an SOI substrate. The PMOS select transistor includes a select gate, a P+ source region and a P+ drain/source region. The floating-gate PMOS transistor includes a floating gate, a P+ drain region and the P+ drain/source region, wherein the P+ drain/source region is shared by the PMOS select transistor and the floating-gate PMOS transistor. A floating first N+ doping region is disposed within the P+ drain/source region. The first N+ doping region, which is adjacent to the floating gate, acts as a source-tie pick-up.
    Type: Application
    Filed: June 8, 2007
    Publication date: December 27, 2007
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Ming-Chou Ho, Shih-Jye Shen
  • Publication number: 20070296018
    Abstract: A non-volatile single-poly memory device is disclosed. The non-volatile single-poly memory device includes two mirror symmetric unit cells, which is capable of providing improved data correctness. Further, the non-volatile single-poly memory device is operated at low voltages and is fully compatible with logic processes.
    Type: Application
    Filed: March 26, 2007
    Publication date: December 27, 2007
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Ming-Chou Ho, Shih-Jye Shen
  • Publication number: 20070109861
    Abstract: A single-poly non-volatile memory cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly non-volatile memory cell includes an ion well, a gate formed on the ion well, a gate dielectric layer between the gate and the ion well, a dielectric stack layer on sidewalls of the gate, a source doping region and a drain doping region. The dielectric stack layer includes a first oxide layer deposited on the sidewalls of the gate and extends to the ion well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 17, 2007
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu