Patents by Inventor Shinichiro Kitada

Shinichiro Kitada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6472780
    Abstract: A rotating electrical machine is proposed which effectively cools a stator and prevents the generation of an eddy current in the stator. A cooling liquid passage extends in a direction parallel with the rotating shaft of the rotor between an outer peripheral face of the stator cores and an inner peripheral face of the case storing the stator cores. The cooling liquid is passed through the cooling liquid passage. In this manner, a highly effective cooling results from direct contact of the cooling liquid and the stator cores. Furthermore an eddy current is not generated in the stator core as a result of using a cooling liquid having insulating properties.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: October 29, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko
  • Patent number: 6470985
    Abstract: An engine is activated to drive a generator when an electrical output is required. The required electrical output (PO) is searched and the necessary engine output is calculated. The basic driving point (NO, TO) which obtains maximum fuel efficiency is set at that output (S101-S105). The load of the generator is controlled so as to reach the set basic driving point. When the catalyst temperature is lower than a set value, while maintaining the required electrical output, the basic driving point is varied to a driving point (Ncold, Tcold) which will raise the exhaust gas temperature (S106-108). Furthermore when the temperature of the peripheral engine components in the engine room is higher than a set value, while maintaining the required electrical output, the driving point is varied to a driving point (Nheat, Theat) which will lower the exhaust gas temperature (S109-S111). Hence while maintaining the electrical output, it is possible satisfy each component temperature condition.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: October 29, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Eiji Inada, Shinichiro Kitada, Toshio Kikuchi, Hiroyuki Hirano, Takeshi Aso, Ryuichi Idoguchi, Yutaro Kaneko
  • Publication number: 20020130573
    Abstract: This invention prevents leakage of cooling medium from a cooling passage in the interior section of a slot of a stator. Coils are housed in the slot of the stator core. The openings of the slot are covered in order to form a cooling passage in the slot. An end plate is disposed on the end of the stator. The stator core and the end plate are integrated by winding coils through the outer side of the end plate. A cylindrical member which projects along the inner peripheral face of the stator from the end of the stator is formed by resin molding to be integrated with a section of the end plate. A ring-shaped space which introduces cooling medium is formed on an outer peripheral side of the cylindrical member and is connected with the cooling passage.
    Type: Application
    Filed: January 29, 2002
    Publication date: September 19, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko, Takashi Tsuneyoshi
  • Publication number: 20020121827
    Abstract: A motor or a generator which has permanent magnets on a moveable member effectively reduces eddy current loss in the permanent magnets. A permanent magnet 1 which is provided for the moveable member of a motor or a generator, for example the rotor of a rotating motor, is divided into magnet sections (1A-1E) having divided widths (t1-t5) in response to the rate of change in the flux density in each divided magnet. Thus the eddy current loss in each magnet section (1A-1E) can be substantially equalized.
    Type: Application
    Filed: February 12, 2002
    Publication date: September 5, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yutaro Kaneko, Shinichiro Kitada, Toshio Kikuchi, Takashi Tsuneyoshi
  • Patent number: 6441524
    Abstract: A rotor (11) for a synchronous motor is provided with a plurality of magnets (15) being substantially V-shaped in cross-section. The V-shaped cross-section is defined by an inner V-surface (25), an outer V-surface (19) and an outward face (23) facing outwardly. A first angle &agr; is subtended between a first straight line connecting a point of intersection (31) of the outer V-surface (19) and the outward face (23) and a second straight line connecting the center (35) of the rotor (11) and the acute angle point (27). A second angle &bgr; is subtended between the first straight line and a third straight line connecting a point of intersection (33) of the inner V-surface (25) and the outward face (23). By setting the angle &bgr; to be larger than 20 percent of the angle &agr;, leakage flux at both ends of the magnets (15) is reduced.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: August 27, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yutaro Kaneko, Shinichiro Kitada, Toshio Kikuchi, Munekatsu Shimada
  • Publication number: 20020074871
    Abstract: A rotating electric machine using an inner section of a slot of a stator as a cooling passage obtains highly effective cooling performance with a small amount of cooling medium. An opening for a slot in a stator is closed by an under plate having a closing member. A regulating plate is disposed which is a member for regulating the cross-sectional area of the passage in substantially a central section of the slot. In this manner, the cross-sectional area of the cooling passage with the plate in the slot is smaller than the cross-sectional area when the regulating plate is not provided by an area corresponding to the cross-sectional area of the regulating plate. This arrangement allows increases in cooling efficiency.
    Type: Application
    Filed: November 7, 2001
    Publication date: June 20, 2002
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko, Takashi Tsuneyoshi
  • Publication number: 20020074889
    Abstract: This invention provides a rotating electric machine using an inner section of a slot of a stator as a cooling passage and allowing a high cooling efficiency. Furthermore, it provides a manufacture method for the rotating electric machine which allows streamlining of the manufacture of the cooling passage. A plate is attached to the plate retaining groove formed in proximity to the opening of the slot of the stator. A resin layer is formed by injection of resin into a space formed between the outer face of the plate and the mold set on an inner peripheral face of the stator. The plate is pressed by the injection pressure of the resin to come into close contact with the stopper and to create a seal which prevents leakage of resin into the slot.
    Type: Application
    Filed: November 7, 2001
    Publication date: June 20, 2002
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko, Takashi Tsuneyoshi
  • Publication number: 20020067086
    Abstract: A rotating electrical machine is proposed which effectively cools a stator and prevents the generation of an eddy current in the stator. A cooling liquid passage extends in a direction parallel with the rotating shaft of the rotor between an outer peripheral face of the stator cores and an inner peripheral face of the case storing the stator cores. The cooling liquid is passed through the cooling liquid passage. In this manner, a highly effective cooling results from direct contact of the cooling liquid and the stator cores. Furthermore an eddy current is not generated in the stator core as a result of using a cooling liquid having insulating properties.
    Type: Application
    Filed: October 5, 2001
    Publication date: June 6, 2002
    Applicant: NISSAN MOTOR CO.,LTD.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko
  • Publication number: 20020027789
    Abstract: A controller for motor/generators is proposed which allows reductions in ripple current generated by an inverter driving a power-generating motor/generator and a vehicle-driving motor/generator.
    Type: Application
    Filed: July 23, 2001
    Publication date: March 7, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Keiji Okushima, Yasuhiko Kitajima, Shinichiro Kitada, Toshio Kikuchi, Yutaro Kaneko
  • Patent number: 6337803
    Abstract: A first inverter circuit (3A) and a second inverter circuit (3B) are formed on a substrate (25). The first inverter circuit (3A) outputs a first three-phase alternating current generated by a first group of switching elements (SW1, SW2, SW3, SW4, SW5, SW6) via a first output busbar (28UA), a second output busbar (28VA), and a third output busbar (28WA). A second inverter circuit (3B) outputs a second three-phase alternating current generated by a second group of switching elements (SW7, SW8, SW9, SW10, SW11, SW12) via a fourth output busbar (28UB), a fifth output busbar (28VB), and a sixth output busbar (28WB). The fourth output busbar (28UB) is in close proximity to the first output busbar (28UA), the fifth output busbar (28VB) is in close proximity to the second output busbar (28VA) and the sixth output busbar (28WB) is in close proximity to the third output busbar (28WA).
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: January 8, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko
  • Publication number: 20010036097
    Abstract: A first inverter circuit (3A) and a second inverter circuit (3B) are formed on a substrate (25). The first inverter circuit (3A) outputs a first three-phase alternating current generated by a first group of switching elements (SW1, SW2, SW3, SW4, SW5, SW6) via a first output busbar (28UA), a second output busbar (28VA), and a third output busbar (28WA). A second inverter circuit (3B) outputs a second three-phase alternating current generated by a second group of switching elements (SW7, SW8, SW9, SW10, SW11, SW12) via a fourth output busbar (28UB), a fifth output busbar (28VB), and a sixth output busbar (28WB). The fourth output busbar (28UB) is in close proximity to the first output busbar (28UA), the fifth output busbar (28VB) is in close proximity to the second output busbar (28VA) and the sixth output busbar (28WB) is in close proximity to the third output busbar (28WA).
    Type: Application
    Filed: March 22, 2001
    Publication date: November 1, 2001
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko
  • Publication number: 20010017499
    Abstract: A rotor (11) for a synchronous motor is provided with a plurality of magnets (15) being substantially V-shaped in cross-section. The V-shaped cross-section is defined by an inner V-surface (25), an outer V-surface (19) and an outward face (23) facing outwardly. A first angle &agr; is subtended between a first straight line connecting a point of intersection (31) of the outer V-surface (19) and the outward face (23) and a second straight line connecting the center (35) of the rotor (11) and the acute angle point (27). A second angle &bgr; is subtended between the first straight line and a third straight line connecting a point of intersection (33) of the inner V-surface (25) and the outward face (23). By setting the angle &bgr;, to be larger than 20 percent of the angle &agr;, leakage flux at both ends of the magnets (15) is reduced.
    Type: Application
    Filed: February 21, 2001
    Publication date: August 30, 2001
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yutaro Kaneko, Shinichiro Kitada, Toshio Kikuchi, Munekatsu Shimada
  • Patent number: 6236583
    Abstract: A motor (4) comprises a stator which generates a rotating magnetic field according to the energization of plural groups (A, B) of coils, and a rotor rotated by the rotating magnetic field of the stator. An inverter (3) comprises the same number of switching circuits (3A, 3B) as the number of groups which supply alternating current to the coils of the groups (A, B) according to the switching action of switching elements (SW1-SW6, SW7-SW12) of each of the switching circuits (3A, 3B), and a control unit (10) which controls the switching elements (SW1-SW6, SW7-SW12) so that the sum of the terminal voltages of the coils of each of the groups (A, B) is constant.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: May 22, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yutaro Kaneko
  • Patent number: 6118237
    Abstract: A battery management for a hybrid drive system for a vehicle recovers input and output performance of a battery if the battery temperature is low. If the battery temperature is less than or equal to a predetermined value (or if the battery internal resistance is greater than or equal to a predetermined value), the battery needs to recover its input and output performance. Under this condition, the state of charge (SOC) of the battery is determined and compared with a predetermined value. The comparison result is used to determine whether the battery is capable of discharging or the battery needs charging. If SOC is greater than or equal to the predetermined value, a controller conducts forced discharge from the battery to operate an electric motor of the hybrid drive system in power mode. This forced discharge causes an increase ion the battery temperature, thus causing the battery to recover its input and output performance.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: September 12, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Yu Owada, Yutaro Kaneko
  • Patent number: 6083138
    Abstract: A hybrid vehicle propulsion system comprises an electric motor as a first propulsion source, an engine as a second propulsion source and a continuously variable transmission for receiving an input rotation from at least one of the motor and engine and for delivering a driving torque to a drive axle of the vehicle. A controller controls a transmission ratio of the transmission so that the transmission ratio in a motor drive mode is higher than the transmission ratio in an engine drive mode.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: July 4, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shunichi Aoyama, Shinichiro Kitada, Noboru Hattori, Isaya Matsuo
  • Patent number: 6053842
    Abstract: A drive system for a hybrid drive vehicle, comprises a driving mechanism which includes a clutch, an engine connected the clutch, a first motor for generating power, connected to the clutch, a second motor for driving a drive wheel, connected to the clutch, and a transmission connected to the clutch. A third motor is provided for driving a hydraulic pump of a hydraulic system for the transmission. A first inverter is connected between the first motor and a battery, in which charging and discharging between the first motor and the battery being made through the first inverter. A second inverter is connected between the second motor and the battery, in which charging and discharging between the second motor and the battery being made through the second inverter. A third inverter is connected between the third motor and the battery, in which changing and discharging between the battery and the motor being made through the third inverter.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: April 25, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shinichiro Kitada, Shunichi Aoyama, Noboru Hattori, Isaya Matsuo
  • Patent number: 6048289
    Abstract: In a hybrid vehicle, an internal combustion engine and a first electric propulsion motor are linked to an input axle of a clutch and an input axle of a continuously variable transmission and a second electric propulsion motor are linked to an output axle of the clutch. A propulsion mechanism for transmitting a power from an output axle of the continuously variable transmission to drive axles, a third electric propulsion motor used to drive a hydraulic system of the continuously variable transmission, a battery supply, a power inverter for charging and discharging between the battery supply and the first, second, and third electric propulsion motors, and a controller for controlling operations of the power inverter, the battery supply, the first, second, and third motors, and the continuously variable transmission are provided in the hybrid vehicle.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: April 11, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Noboru Hattori, Shunichi Aoyama, Shinichiro Kitada, Isaya Matsuo
  • Patent number: 6026921
    Abstract: A hybrid vehicle employing a parallel hybrid system, using both an internal combustion engine and an electric motor for propulsion, comprises a propulsion mechanism having at least a first electric motor, an internal combustion engine, a clutch, a second electric motor, a transmission, and drive wheels, and constructed so that a crankshaft of the engine and a motor shaft of the first electric motor are connected to an input shaft of the clutch, and that a motor shaft of the second electric motor and an input shaft of the transmission are connected to an output shaft of the clutch to transmit a driving torque from the output shaft of the transmission to the drive wheels. An engine temperature sensor is provided for detecting an engine temperature.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: February 22, 2000
    Assignee: Nissan Motor Co., Ltd
    Inventors: Shunichi Aoyama, Shinichiro Kitada, Noboru Hattori, Isaya Matsuo
  • Patent number: 5945808
    Abstract: A hybrid electric vehicle comprises an electric motor, a battery pack for the electric motor, a generator driven by an engine to provide electric power used for charging the battery pack, and a battery management for the battery pack. The battery management determines a current value of battery temperature (BT) of the battery pack and a current value of state of charge (SOC) within the battery pack. What are stored are a first set of varying SOC values and a second set of varying SOC values against varying BT values. The first set of varying SOC values are minimum SOC values required for the battery pack to produce a constant electric power output at varying BT values. The second set of varying SOC values are each indicative of an allowable upper limit to the quantity of electric charge that will accumulate in the battery pack due to operation of charging the battery pack with a constant electric power input at a corresponding BT value.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: August 31, 1999
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshio Kikuchi, Shinichiro Kitada, Hiroyuki Hirano, Eiji Inada, Takeshi Aso, Ryuichi Idoguchi, Yutaro Kaneko
  • Patent number: 5656911
    Abstract: A driving device controls a permanent-magnet synchronous motor having a permanent magnet in its rotor using a voltage-type inverter supplying drive power for the synchronous motor, makes the torque of the synchronous motor and the d-axis current flowing in the synchronous motor in the direction of the magnetic flux generated by the permanent magnet approach their own command values, and performs weakening field control by decreasing the d-axis current. To perform the above described control without complicated d-axis current command value operations or temperature amendments to motor constants, the driving device includes a proportional controller for outputting a d-axis signal proportional to the deviation between a d-axis current detection value and a d-axis current command value for the motor.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: August 12, 1997
    Assignees: Fuji Electric Company, Nissan Motor Company
    Inventors: Tomoharu Nakayama, Koetsu Fujita, Shigenori Kinoshita, Takao Yanase, Masahiko Hanazawa, Shinichiro Kitada, Toshio Kikuchi, Takeshi Aso