Patents by Inventor Shinji Nakajima

Shinji Nakajima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10975052
    Abstract: An object of the present invention is to provide a compound having an anti-inflammatory activity or a pharmacologically acceptable salt thereof. The solution of the present invention is a compound of general formula (1) or a pharmacologically acceptable salt thereof. wherein the symbols in the formula are defined below: R1: e.g., a C1-C6 alkyl group; R2: a C1-C6 alkyl group; A: e.g., an oxygen atom; and R3: e.g., a C1-C6 alkyl group.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 13, 2021
    Assignee: Daiichi Sankyo Company, Limited
    Inventors: Keiji Saito, Katsuyoshi Nakajima, Toru Taniguchi, Osamu Iwamoto, Satoshi Shibuya, Yasuyuki Ogawa, Kazumasa Aoki, Nobuya Kurikawa, Shinji Tanaka, Momoko Ogitani, Eriko Kioi, Kaori Ito, Natsumi Nishihama, Tsuyoshi Mikkaichi, Wataru Saitoh
  • Patent number: 10879064
    Abstract: Provided is a method for manufacturing a semiconductor device, the semiconductor device including a substrate, and an oxide semiconductor TFT that is supported by the substrate and includes an oxide semiconductor film as an active layer. The method includes: (A) preparing MO gas containing a first organometallic compound that contains In and a second organometallic compound that contains Zn; and (B) supplying gas containing the MO gas and oxygen to the substrate placed in a chamber under a condition in which the substrate is heated to 500° C. or lower, and growing an oxide semiconductor film containing In and Zn on the substrate using an MOCVD method. Step (B) is performed under a condition in which plasma is formed in the chamber.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 29, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Shinji Nakajima, Hirohiko Nishiki, Hirohide Mimura, Yuhichi Saitoh, Yujiro Takeda, Shogo Murashige, Izumi Ishida, Tohru Okabe
  • Publication number: 20200382168
    Abstract: A wireless communication system includes: base stations that are a plurality of transmission devices that transmits signals including different known sequences using a same frequency; and a mobile station that is a reception device that performs channel estimation using a reception signal received from at least one of the plurality of transmission devices, an average time parameter, and at least one of a plurality of the known sequences corresponding to the plurality of transmission devices, and removes an interference signal included in the reception signal using a result of the channel estimation, the average time parameter being a parameter related to channel estimation accuracy and determined based on a moving speed of a moving one of the reception device that receives the reception signal and the transmission devices that transmits the reception signal.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 3, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Satoshi SASAKI, Akinori NAKAJIMA, Shinji MASUDA, Hiroyasu SANO
  • Patent number: 10847747
    Abstract: A display device according to an embodiment of the present invention includes: one or a plurality of display elements provided in a display region; and an organic sealing film provided above the display element in the display region and a picture-frame region outside the display region, the organic sealing film being formed of an organic insulating material, the organic sealing film including, in at least a portion of the picture-frame region, a high surface portion whose surface is higher than a surface of the organic sealing film in the display region.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 24, 2020
    Assignee: Japan Display Inc.
    Inventor: Shinji Nakajima
  • Publication number: 20200303679
    Abstract: A light emitting apparatus (10) includes a substrate (100), an insulating layer (160), a light emitting element (102), a coating film (140), and a structure (150). The insulating layer (160) is formed over one surface of the substrate (100), and includes an opening (162). The light emitting element (102) is formed in the opening (162). The coating film (140) is formed over the one surface of the substrate (100), and covers a portion of the light emitting element (102), the insulating layer (160), and the one surface of the substrate (100). The coating film (140) does not cover another portion of the substrate (100) (for example, a portion of an end portion: hereinafter, referred to as a first portion). The structure (150) is located between the first portion of the substrate (100) and the insulating layer (160). The coating film (140) also covers the insulating layer (160).
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Inventors: Koji FUJITA, Shinsuke TANAKA, Yuji SAITO, Shinji NAKAJIMA
  • Publication number: 20200239425
    Abstract: An object of the present invention is to provide a compound having an anti-inflammatory activity or a pharmacologically acceptable salt thereof. The solution of the present invention is a compound of general formula (1) or a pharmacologically acceptable salt thereof. wherein the symbols in the formula are defined below: R1: e.g., a C1-C6 alkyl group; R2: a C1-C6 alkyl group; A: e.g., an oxygen atom; and R3: e.g., a C1-C6 alkyl group.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 30, 2020
    Applicant: Daiichi Sankyo Company, Limited
    Inventors: Keiji Saito, Katsuyoshi Nakajima, Toru Taniguchi, Osamu Iwamoto, Satoshi Shibuya, Yasuyuki Ogawa, Kazumasa Aoki, Nobuya Kurikawa, Shinji Tanaka, Momoko Ogitani, Eriko Kioi, Kaori Ito, Natsumi Nishihama, Tsuyoshi Mikkaichi, Wataru Saitoh
  • Patent number: 10700306
    Abstract: A light emitting apparatus (10) includes a substrate (100), an insulating layer (160), a light emitting element (102), a coating film (140), and a structure (150). The insulating layer (160) is formed over one surface of the substrate (100), and includes an opening (162). The light emitting element (102) is formed in the opening (162). The coating film (140) is formed over the one surface of the substrate (100), and covers a portion of the light emitting element (102), the insulating layer (160), and the one surface of the substrate (100). The coating film (140) does not cover another portion of the substrate (100) (for example, a portion of an end portion: hereinafter, referred to as a first portion). The structure (150) is located between the first portion of the substrate (100) and the insulating layer (160). The coating film (140) also covers the insulating layer (160).
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: June 30, 2020
    Assignee: PIONEER CORPORATION
    Inventors: Koji Fujita, Shinsuke Tanaka, Yuji Saito, Shinji Nakajima
  • Patent number: 10690975
    Abstract: Provided are an active-matrix substrate, a method for manufacturing the same, and a display device, which render it possible to inhibit electrostatic discharge from occurring during the process of manufacturing a display panel and suppress manufacturing cost. An IGZO film, which is positioned between a silicon oxide film included in a gate insulating film and an etch-stop layer, is annealed at 200 to 350° C. after a passivation film for protecting a TFT is formed. As a result, the passivation film is annealed, and the IGZO film is changed from a conductor to a semiconductor. Consequently, it is not only possible to suppress the occurrence of ESD, but also possible to eliminate the need to sever an electrostatic discharge prevention circuit from a display panel, resulting in a reduced cost of manufacturing a display device.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 23, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tohru Okabe, Hirohiko Nishiki, Shinji Nakajima, Izumi Ishida, Shogo Murashige
  • Publication number: 20200194254
    Abstract: Provided is a method for manufacturing a semiconductor device, the semiconductor device including a substrate, and an oxide semiconductor TFT that is supported by the substrate and includes an oxide semiconductor film as an active layer. The method includes: (A) preparing MO gas containing a first organometallic compound that contains In and a second organometallic compound that contains Zn; and (B) supplying gas containing the MO gas and oxygen to the substrate placed in a chamber under a condition in which the substrate is heated to 500° C. or lower, and growing an oxide semiconductor film containing In and Zn on the substrate using an MOCVD method. Step (B) is performed under a condition in which plasma is formed in the chamber.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 18, 2020
    Inventors: Shinji NAKAJIMA, Hirohiko NISHIKI, Hirohide MIMURA, Yuhichi SAITOH, Yujiro TAKEDA, Shogo MURASHIGE, Izumi ISHIDA, Tohru OKABE
  • Patent number: 10685598
    Abstract: A wiring delay is prevented or reduced by lowering a wiring resistance without making a wire wider. The present invention includes: a light blocking film (102); a light-transmitting film (106); and a first wiring layer (105A) which serves as part of a wire configured to electrically control an amount of transmitted light for each pixel, the first wiring layer (105A) being provided over the light blocking film (102), and the light-transmitting film (106) being provided over the first wiring layer (105A) so as to cover a side surface of the first wiring layer.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: June 16, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tohru Okabe, Hirohiko Nishiki, Shinji Nakajima, Izumi Ishida, Shogo Murashige
  • Patent number: 10654821
    Abstract: An object of the present invention is to provide a compound having an anti-inflammatory activity or a pharmacologically acceptable salt thereof. The solution of the present invention is a compound of general formula (1) or a pharmacologically acceptable salt thereof. wherein the symbols in the formula are defined below: R1: e.g., a C1-C6 alkyl group; R2: a C1-C6 alkyl group; A: e.g., an oxygen atom; and R3: e.g., a C1-C6 alkyl group.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: May 19, 2020
    Assignee: Daiichi Sankyo Company, Limited
    Inventors: Keiji Saito, Katsuyoshi Nakajima, Toru Taniguchi, Osamu Iwamoto, Satoshi Shibuya, Yasuyuki Ogawa, Kazumasa Aoki, Nobuya Kurikawa, Shinji Tanaka, Momoko Ogitani, Eriko Kioi, Kaori Ito, Natsumi Nishihama, Tsuyoshi Mikkaichi, Wataru Saitoh
  • Patent number: 10600541
    Abstract: There is provided a compression-bonded magnet with a case, which can realize high magnetic properties, high corrosion resistance and high durability strength even at low cost.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: March 24, 2020
    Assignee: NTN CORPORATION
    Inventors: Shinji Miyazaki, Takuji Harano, Tatsuo Nakajima
  • Patent number: 10570109
    Abstract: An object of the present invention is to provide a compound having an anti-inflammatory activity or a pharmacologically acceptable salt thereof. The solution of the present invention is a compound of general formula (1) or a pharmacologically acceptable salt thereof. wherein the symbols in the formula are defined below: R1: e.g., a C1-C6 alkyl group; R2: a C1-C6 alkyl group; A: e.g., an oxygen atom; and R3: e.g., a C1-C6 alkyl group.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: February 25, 2020
    Assignee: Daiichi Sankyo Company, Limited
    Inventors: Keiji Saito, Katsuyoshi Nakajima, Toru Taniguchi, Osamu Iwamoto, Satoshi Shibuya, Yasuyuki Ogawa, Kazumasa Aoki, Nobuya Kurikawa, Shinji Tanaka, Momoko Ogitani, Eriko Kioi, Kaori Ito, Natsumi Nishihama, Tsuyoshi Mikkaichi, Wataru Saitoh
  • Publication number: 20200002302
    Abstract: An object of the present invention is to provide a compound having an anti-inflammatory activity or a pharmacologically acceptable salt thereof. The solution of the present invention is a compound of general formula (1) or a pharmacologically acceptable salt thereof. wherein the symbols in the formula are defined below: R1: e.g., a C1-C6 alkyl group; R2: a C1-C6 alkyl group; A: e.g., an oxygen atom; and R3: e.g., a C1-C6 alkyl group.
    Type: Application
    Filed: September 5, 2019
    Publication date: January 2, 2020
    Applicant: Daiichi Sankyo Company, Limited
    Inventors: Keiji Saito, Katsuyoshi Nakajima, Toru Taniguchi, Osamu Iwamoto, Satoshi Shibuya, Yasuyuki Ogawa, Kazumasa Aoki, Nobuya Kurikawa, Shinji Tanaka, Momoko Ogitani, Eriko Kioi, Kaori Ito, Natsumi Nishihama, Tsuyoshi Mikkaichi, Wataru Saitoh
  • Patent number: 10477160
    Abstract: An information processing apparatus having a changed region detection unit performs a process that includes repeating a cycle. The cycle includes causing a projection unit to project a pattern, that includes light and dark portions, onto target objects, causing an image capturing unit to capture an image of the target objects while the pattern is being projected by the projection unit, and causing a holding unit to hold one of the target objects based on a captured image obtained by the image capturing processing. Based on a reference boundary position corresponding to a boundary between the light and dark portions in the pattern in the captured image obtained in a previous cycle and a target boundary position in the captured image obtained in a current cycle, the changed region detection unit detects a changed region with a change between the previous cycle and the current cycle.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: November 12, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masaki Nakajima, Hiroto Yoshii, Hiroshi Yoshikawa, Shinji Uchiyama
  • Patent number: 10381588
    Abstract: To provide an organic EL element having good injection properties and transport properties of a carrier. Included are: an InGaZnO layer with a composition rich in In2O3 as a transparent electrode contacting a negative electrode; an InGaZnO layer with a stoichiometric ratio of In:Ga:Zn:O=1:1:1:4 as an electron injecting layer; and an InGaZnO layer with a composition rich in Ga2O3 as an electron transport layer contacting a light emitting layer.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: August 13, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Manabu Niboshi, Hideki Uchida, Shinji Nakajima, Yoshiyuki Isomura, Eiji Koike, Yuto Tsukamoto, Asae Ito
  • Publication number: 20190237700
    Abstract: A light emitting apparatus (10) includes a substrate (100), an insulating layer (160), a light emitting element (102), a coating film (140), and a structure (150). The insulating layer (160) is formed over one surface of the substrate (100), and includes an opening (162). The light emitting element (102) is formed in the opening (162). The coating film (140) is formed over the one surface of the substrate (100), and covers a portion of the light emitting element (102), the insulating layer (160), and the one surface of the substrate (100). The coating film (140) does not cover another portion of the substrate (100) (for example, a portion of an end portion: hereinafter, referred to as a first portion). The structure (150) is located between the first portion of the substrate (100) and the insulating layer (160). The coating film (140) also covers the insulating layer (160).
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Koji FUJITA, Shinsuke TANAKA, Yuji SAITO, Shinji NAKAJIMA
  • Publication number: 20190207142
    Abstract: A light-emitting unit (140) is formed over a first surface (102) of a substrate (100). A first terminal (112) and a second terminal (132) are formed on the first surface (102) of the substrate (100), and are electrically connected to the light-emitting unit (140). A sealing layer (200) is formed over the first surface (102) of the substrate (100), and seals the light-emitting unit (140). In addition, the sealing layer (200) does not cover the first terminal (112) and the second terminal (132). A cover layer (210) is formed over the sealing layer (200), and is formed of a material different from that of the cover layer (210). In at least a portion of a region located next to the first terminal (112) and a region located next to the second terminal (132), a portion of an end of the cover layer (210) protrudes from the sealing layer (200).
    Type: Application
    Filed: February 22, 2019
    Publication date: July 4, 2019
    Inventors: Hirotsugi HATAKEYAMA, Shinsuke TANAKA, Shinji NAKAJIMA
  • Patent number: 10316381
    Abstract: A method is provided for producing a hot-pressed member including heating a Ni-based coated steel sheet, which includes, on a surface thereof, a Zn—Ni alloy coating layer containing 13% by mass or more of Ni, in a temperature region of an Ac3 transformation point to 1200° C.; and then hot-pressing the steel sheet.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: June 11, 2019
    Assignee: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Seiji Nakajima, Tatsuya Miyoshi, Hiroyuki Masuoka, Shinji Ootsuka
  • Publication number: 20190170857
    Abstract: A radar transceiver may include a noise canceller. The noise canceller may include a phase shifter circuit, a variable gain amplifier, and a coupler circuit. The phase shifter circuit may shift (i) a phase of a modulated signal, (ii) a phase of an original signal, or (iii) a phase of a signal generated by a noise cancellation signal generator circuit having a frequency corresponding to a frequency of a reflected signal which is reflected by an obstacle. The variable gain amplifier may amplify or attenuate a noise cancellation signal. The coupler circuit may couple the noise cancellation signal with a received signal from a receiver. An amplitude of the noise cancellation signal may be controlled by a controller via the variable gain amplifier. A phase shift amount of the noise cancellation signal may be controlled by the controller via the phase shifter circuit.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Kensuke NAKAJIMA, Shinji YAMAURA