Patents by Inventor Shinsuke Takaoka

Shinsuke Takaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200213064
    Abstract: A communication apparatus comprises a generator that generates frequency resource position information corresponding to a first information which is based on the communication quality information received from user equipments, the frequency resource position information indicating validity or invalidity of the first information for each frequency resource, and a transmitter that transmits the first information, the frequency resource position information and a cell ID which the frequency resource position is applied, to another communication apparatus via a backhaul.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Shinsuke Takaoka, Daichi Imamura, Kenichi Miyoshi
  • Publication number: 20200163072
    Abstract: Provided are a radio transmission apparatus and a radio transmission method whereby the increase of number of signaling bits can be suppressed and further the flexibility of frequency scheduling can be improved. A notified RBG calculating unit (203) that adds a predetermined offset value of “1” or “?1” to one of the start RBG number and the end RBG number of allocated RBG number information (b?i) output by a scheduling unit (201), thereby calculating notified RBG number information (bi). An RBG total number setting unit (204) calculates the total number of RBGs, which is to be notified, by adding “1” to the total number of allocated RBGs. A notified information generating unit (205) applies the notified RBG number information (bi) and the notified total number of RBGs (Nrb?) to a predetermined formula, thereby generating and transmitting, to terminals, notified information (r).
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Takashi Iwai, Daichi Imamura, Akihiko Nishio, Yoshihiko Ogawa, Shinsuke Takaoka
  • Publication number: 20200128493
    Abstract: Provided are a wireless communication terminal device and a power allocation method, wherein transmission channel quality information, regarding a Pcell having a high probability that UCI is multiplied therein, can be accurately estimated by an SRS having high priority in power allocation, and an eNB can instruct appropriate transmission power to an UL channel which transmits the subsequent UCI. A power scaling detection unit detects whether or not a total transmission power value of the UL channels transmitted by the plurality of CC exceeds the maximum transmission power specific to the UE. When a plurality of SRS are simultaneously transmitted using a Pcell and a Scell, and power scaling occurs, a power scaling control unit performs power allocation so that transmission power of the SRS of the Pcell has the higher priority than that of the SRS of the Scell.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Shinsuke Takaoka, Hidetoshi Suzuki, Akihiko Nishio, Takashi Iwai
  • Patent number: 10623168
    Abstract: A communication apparatus comprises a generator that generates frequency resource position information corresponding to a first information which is based on the communication quality information received from user equipments, the frequency resource position information indicating validity or invalidity of the first information for each frequency resource, and a transmitter that transmits the first information, the frequency resource position information and a cell ID which the frequency resource position is applied, to another communication apparatus via a backhaul.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: April 14, 2020
    Assignee: Sun Patent Trust
    Inventors: Shinsuke Takaoka, Daichi Imamura, Kenichi Miyoshi
  • Patent number: 10582477
    Abstract: Provided are a radio transmission apparatus and a radio transmission method whereby the increase of number of signaling bits can be suppressed and further the flexibility of frequency scheduling can be improved. A notified RBG calculating unit (203) that adds a predetermined offset value of “1” or “?1” to one of the start RBG number and the end RBG number of allocated RBG number information (b?i) output by a scheduling unit (201), thereby calculating notified RBG number information (bi). An RBG total number setting unit (204) calculates the total number of RBGs, which is to be notified, by adding “1” to the total number of allocated RBGs. A notified information generating unit (205) applies the notified RBG number information (bi) and the notified total number of RBGs (Nrb?) to a predetermined formula, thereby generating and transmitting, to terminals, notified information (r).
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 3, 2020
    Assignee: Sun Patent Trust
    Inventors: Takashi Iwai, Daichi Imamura, Akihiko Nishio, Yoshihiko Ogawa, Shinsuke Takaoka
  • Publication number: 20200068503
    Abstract: Disclosed is a wireless communication device that can suppress an increase in power consumption of a terminal while preventing the degradation of SINR measurement precision resulting from TPC errors in a base station. A terminal controls the transmission power of a second signal by adding an offset to the transmission power of a first signal; an offset-setting unit sets an offset correction value in response to a transmission time gap between a third signal transmitted the previous time and the second signal transmitted this time; and a transmission power control unit controls the transmission power of the second signal using the correction value.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Inventors: Takashi Iwai, Daichi Imamura, Akihiko Nishio, Yoshihiko Ogawa, Shinsuke Takaoka
  • Patent number: 10560906
    Abstract: Provided are a wireless communication terminal device and a power allocation method, wherein transmission channel quality information, regarding a Pcell having a high probability that UCI is multiplied therein, can be accurately estimated by an SRS having high priority in power allocation, and an eNB can instruct appropriate transmission power to an UL channel which transmits the subsequent UCI. A power scaling detection unit detects whether or not a total transmission power value of the UL channels transmitted by the plurality of CC exceeds the maximum transmission power specific to the UE. When a plurality of SRS are simultaneously transmitted using a Pcell and a Scell, and power scaling occurs, a power scaling control unit performs power allocation so that transmission power of the SRS of the Pcell has the higher priority than that of the SRS of the Scell.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: February 11, 2020
    Assignee: Sun Patent Trust
    Inventors: Shinsuke Takaoka, Hidetoshi Suzuki, Akihiko Nishio, Takashi Iwai
  • Publication number: 20200045701
    Abstract: A communication system includes a communication apparatus and a base station. The communication apparatus includes a Discrete Fourier Transform (DFT) transformer which transforms a time-domain signal into a frequency-domain signal with a DFT size that is a product of powers of a plurality of values; a mapper which maps the frequency-domain signal on a plurality of frequency bands, each frequency band being located at a position separate from position(s) of other(s) of the plurality of frequency bands; and a signal generator which generates a single carrier-frequency division multiple access (SC-FDMA) time-domain signal from the mapped signal. The base station includes a receiver which receives the SC-FDMA time-domain signal; a combiner which generates the frequency-domain signal from the SC-FDMA time-domain signal; and a transformer which transforms the frequency-domain signal into the time-domain signal with an inverse Discrete Fourier Transform (IDFT) having the DFT size.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Inventors: Shinsuke Takaoka, Masayuki Hoshino, Kenichi Miyoshi
  • Patent number: 10506525
    Abstract: Disclosed is a wireless communication device that can suppress an increase in power consumption of a terminal while preventing the degradation of SINR measurement precision resulting from TPC errors in a base station. A terminal controls the transmission power of a second signal by adding an offset to the transmission power of a first signal; an offset-setting unit sets an offset correction value in response to a transmission time gap between a third signal transmitted the previous time and the second signal transmitted this time; and a transmission power control unit controls the transmission power of the second signal using the correction value.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 10, 2019
    Assignee: Sun Patent Trust
    Inventors: Takashi Iwai, Daichi Imamura, Akihiko Nishio, Yoshihiko Ogawa, Shinsuke Takaoka
  • Patent number: 10484994
    Abstract: A communication apparatus includes a receiver, a combiner, and a transformer. The receiver receives signals mapped on plural frequency bands. A size of at least one of the frequency bands is a multiple of a product of two or more powers of prime numbers, which are integer numbers greater than 1 and are different from each other. An exponent for at least one of the prime numbers is an integer greater than 1. The combiner combines the received signals into a combined signal. The transformer transforms the combined signal in a frequency domain into a symbol sequence in a time domain with an inverse discrete Fourier transform (IDFT) having a size that is a product of powers of plural values. The values are integer numbers greater than 1 and are different from each other. An exponent for at least one of the values is an integer greater than 1.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: November 19, 2019
    Assignee: Sun Patent Trust
    Inventors: Shinsuke Takaoka, Masayuki Hoshino, Kenichi Miyoshi
  • Publication number: 20190349933
    Abstract: A wireless communication terminal apparatus wherein even when a SC-FDMA signal is divided into a plurality of clusters and the plurality of clusters are then mapped to respective discontinuous frequency bands (when C-SC-FDMA is used), the improvement effect of system throughput can be maintained, while the user throughput can be improved. In the apparatus, a DFT unit (210) subjects a symbol sequence of time domain to a DFT process, thereby generating signals of frequency domain. A setting unit (211) divides the signals input from the DFT unit (210) into a plurality of clusters according to a cluster pattern that is in accordance with an MCS set, an encoding size, or the number of Ranks occurring during MIMO transmissions, which is indicated in those signals input, and then maps the plurality of clusters to the respective ones of a plurality of discontinuous frequency resources, thereby setting a constellation of the plurality of clusters in the frequency domain.
    Type: Application
    Filed: July 22, 2019
    Publication date: November 14, 2019
    Inventors: Shinsuke Takaoka, Seigo Nakao, Daichi Imamura, Masayuki Hoshino
  • Patent number: 10405315
    Abstract: A wireless communication terminal apparatus wherein even when a SC-FDMA signal is divided into a plurality of clusters and the plurality of clusters are then mapped to respective discontinuous frequency bands (when C-SC-FDMA is used), the improvement effect of system throughput can be maintained, while the user throughput can be improved. In the apparatus, a DFT unit (210) subjects a symbol sequence of time domain to a DFT process, thereby generating signals of frequency domain. A setting unit (211) divides the signals input from the DFT unit (210) into a plurality of clusters according to a cluster pattern that is in accordance with an MCS set, an encoding size, or the number of Ranks occurring during MIMO transmissions, which is indicated in those signals input, and then maps the plurality of clusters to the respective ones of a plurality of discontinuous frequency resources, thereby setting a constellation of the plurality of clusters in the frequency domain.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: September 3, 2019
    Assignee: Sun Patent Trust
    Inventors: Shinsuke Takaoka, Seigo Nakao, Daichi Imamura, Masayuki Hoshino
  • Publication number: 20190261403
    Abstract: A base station able to maintain backward compatibility with an LTE mobile station while minimizing the amount of increase in uplink scheduling information reception and demodulation/decoding processing in independent uplink/downlink cell data transmission. A wireless communication system includes a cell #1, a cell #2, and an LTE-A mobile station, and supports independent uplink/downlink cell data transmission. The base station of the cell #2 arranges a PDCCH+, which includes uplink scheduling information from the LTE-A mobile station to the base station of the cell #2, in a downlink data region in the downlink connection of the base station of the cell #1.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Inventors: Atsushi SUMASU, Shozo OKASAKA, Shinsuke TAKAOKA, Seigo NAKAO, Daichi IMAMURA
  • Publication number: 20190254035
    Abstract: Provided is an integrated circuit that calculates a power headroom (PHR) and that can preclude the recognition mismatch in which the reference formats of different UL grants are recognized between a wireless communication terminal apparatus and a wireless communication base station apparatus. For the PHR calculation of a PUSCH in a CC in which no UL grant is present, a UL grant, which was used for calculating the PHR in another CC having the same subframe number as the PUSCH, is used. For example, as to a subframe number=#1, the UL grant of CC #0 is used for calculating the PHR of CC #2 in which no UL grant is present.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Shinsuke TAKAOKA, Takashi IWAI
  • Publication number: 20190246362
    Abstract: Provided are a wireless communication terminal device and a power allocation method, wherein transmission channel quality information, regarding a Pcell having a high probability that UCI is multiplied therein, can be accurately estimated by an SRS having high priority in power allocation, and an eNB can instruct appropriate transmission power to an UL channel which transmits the subsequent UCI. A power scaling detection unit detects whether or not a total transmission power value of the UL channels transmitted by the plurality of CC exceeds the maximum transmission power specific to the UE. When a plurality of SRS are simultaneously transmitted using a Pcell and a Scell, and power scaling occurs, a power scaling control unit performs power allocation so that transmission power of the SRS of the Pcell has the higher priority than that of the SRS of the Scell.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Shinsuke Takaoka, Hidetoshi Suzuki, Akihiko Nishio, Takashi Iwai
  • Patent number: 10349415
    Abstract: Provided is an integrated circuit that calculates a power headroom (PHR) and that can preclude the recognition mismatch in which the reference formats of different UL grants are recognized between a wireless communication terminal apparatus and a wireless communication base station apparatus. For the PHR calculation of a PUSCH in a CC in which no UL grant is present, a UL grant, which was used for calculating the PHR in another CC having the same subframe number as the PUSCH, is used. For example, as to a subframe number=#1, the UL grant of CC #0 is used for calculating the PHR of CC #2 in which no UL grant is present.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 9, 2019
    Assignee: SUN PATENT TRUST
    Inventors: Shinsuke Takaoka, Takashi Iwai
  • Patent number: 10334622
    Abstract: A base station able to maintain backward compatibility with an LTE mobile station while minimizing the amount of increase in uplink scheduling information reception and demodulation/decoding processing in independent uplink/downlink cell data transmission. A wireless communication system includes a cell #1, a cell #2, and an LTE-A mobile station, and supports independent uplink/downlink cell data transmission. The base station of the cell #2 arranges a PDCCH+, which includes uplink scheduling information from the LTE-A mobile station to the base station of the cell #2, in a downlink data region in the downlink connection of the base station of the cell #1.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: June 25, 2019
    Assignee: SUN PATENT TRUST
    Inventors: Atsushi Sumasu, Shozo Okasaka, Shinsuke Takaoka, Seigo Nakao, Daichi Imamura
  • Patent number: 10313988
    Abstract: Provided are a wireless communication terminal device and a power allocation method, wherein transmission channel quality information, regarding a Pcell having a high probability that UCI is multiplied therein, can be accurately estimated by an SRS having high priority in power allocation, and an eNB can instruct appropriate transmission power to an UL channel which transmits the subsequent UCI. A power scaling detection unit detects whether or not a total transmission power value of the UL channels transmitted by the plurality of CC exceeds the maximum transmission power specific to the UE. When a plurality of SRS are simultaneously transmitted using a Pcell and a Scell, and power scaling occurs, a power scaling control unit performs power allocation so that transmission power of the SRS of the Pcell has the higher priority than that of the SRS of the Scell.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 4, 2019
    Assignee: Sun Patent Trust
    Inventors: Shinsuke Takaoka, Hidetoshi Suzuki, Akihiko Nishio, Takashi Iwai
  • Patent number: 10288547
    Abstract: A facility state analysis device of an embodiment is provided. The device includes an inputter which accepts input of information specifying a state and location of a facility installed outdoors, a calculator which calculates, by performing statistical processing based at least in part on the information specifying the state and location input to the inputter and information on a predetermined section on a map, an average failure year of the facilities in the section, and a display controller which displays, on a display, the average failure year calculated by the calculator superimposed on the map.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: May 14, 2019
    Assignee: Tokyo Electric Power Company Holdings, Incorporated
    Inventors: Mikiyuki Ichiba, Tamotsu Uduki, Hideo Mizuochi, Yuya Niidome, Masaomi Takaoka, Shinsuke Nasukawa, Yuuji Tagawa, Hideaki Sato, Yoshiki Sakamoto, Akihiko Kataoka
  • Publication number: 20190110257
    Abstract: Disclosed is a wireless communication device that can suppress an increase in power consumption of a terminal while preventing the degradation of SINR measurement precision resulting from TPC errors in a base station. A terminal controls the transmission power of a second signal by adding an offset to the transmission power of a first signal; an offset-setting unit sets an offset correction value in response to a transmission time gap between a third signal transmitted the previous time and the second signal transmitted this time; and a transmission power control unit controls the transmission power of the second signal using the correction value.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Inventors: Takashi Iwai, Daichi Imamura, Akihiko Nishio, Yoshihiko Ogawa, Shinsuke Takaoka