Patents by Inventor SHO SHIBATA

SHO SHIBATA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220174767
    Abstract: A communication device that establishes connection to an access point is configured to perform processing for establishing connection to the access point and communicating data with the access point through a first communication channel, processing for notifying the access point of suppression of data communication, processing for data communication for a predetermined period through a second communication channel after the notification of suppression of data communication, processing for resuming data communication with the access point through the first communication channel after data communication through the second communication channel, and processing for determining timing to perform processing for data communication through the second communication channel.
    Type: Application
    Filed: September 23, 2021
    Publication date: June 2, 2022
    Inventors: Sho Kurose, Takayuki Shibata, Satoshi Miyamoto, Yoshitaka Imura
  • Patent number: 11322769
    Abstract: In a flow battery according to one aspect of the present disclosure, a first liquid does not include an undesired compound. The flow battery satisfies requirement (i), (ii), (iii) or (iv). (i) An anode active material 14 includes graphite, and the first liquid has an equilibrium potential of not more than 0.15 V vs. Li/Li+. (ii) An anode active material includes aluminum, and the first liquid has an equilibrium potential of not more than 0.18 V vs. Li/Li+. (iii) An anode active material includes tin, and the first liquid has an equilibrium potential of not more than 0.25 V vs. Li/Li+. (iv) An anode active material includes silicon, and the first liquid has an equilibrium potential of not more than 0.25 V vs. Li/Li+.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: May 3, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shuji Ito, Masahisa Fujimoto, Honami Sako, Sho Shibata
  • Patent number: 11258087
    Abstract: The present disclosure provides a flow battery comprising a flexible lithium ion conductive film having durability against a highly reductive non-aqueous electrolyte liquid. The flow battery according to the present disclosure comprises a first non-aqueous electrolyte liquid, a first electrode, a second electrode, and a lithium ion conductive film. The first non-aqueous electrolyte liquid contains lithium ions and further biphenyl, phenanthrene, stilbene, triphenylene, anthracene, acenaphthene, acenaphthylene, fluorene, fluoranthene, o-terphenyl, m-terphenyl, or p-terphenyl. The lithium ion conductive film comprises a composite body. The composite body contains a lithium ion conductive polymer and polyvinylidene fluoride. The lithium ion conductive polymer includes an aromatic ring into which a lithium salt of an acidic group has been introduced. The lithium ion conductive polymer and the polyvinylidene fluoride have been mixed with each other homogeneously in the composite body.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: February 22, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuka Okada, Shinji Ando, Sho Shibata
  • Patent number: 10833346
    Abstract: The flow battery according to the present disclosure comprises a first non-aqueous liquid, a first electrode in contact with the first non-aqueous liquid, a second electrode which serves as a counter electrode of the first electrode, and a lithium ion conductive film which separates the first electrode and the second electrode from each other. The lithium ion conductive film is formed of a polymer base material containing an ionic polymer. The polymer base material has an interspace which communicates with an outside thereof. The polymer base material is formed of at least one kind of resin selected from the group consisting of a thermosetting resin and a thermoplastic resin which has a melting point of not less than 150 degrees Celsius. The ionic polymer is contained in an inside of the interspace of the polymer base material.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: November 10, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuka Okada, Shinji Ando, Sho Shibata
  • Publication number: 20200350608
    Abstract: In a flow battery according to one aspect of the present disclosure, a first liquid does not include an undesired compound. The flow battery satisfies requirement (i), (ii), (iii) or (iv). (i) An anode active material 14 includes graphite, and the first liquid has an equilibrium potential of not more than 0.15 V vs. Li/Li+. (ii) An anode active material includes aluminum, and the first liquid has an equilibrium potential of not more than 0.18 V vs. Li/Li+. (iii) An anode active material includes tin, and the first liquid has an equilibrium potential of not more than 0.25 V vs. Li/Li+. (iv) An anode active material includes silicon, and the first liquid has an equilibrium potential of not more than 0.25 V vs. Li/Li+.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: SHUJI ITO, MASAHISA FUJIMOTO, HONAMI SAKO, SHO SHIBATA
  • Publication number: 20200052315
    Abstract: The present disclosure provides a flow battery comprising a flexible lithium ion conductive film having durability against a highly reductive non-aqueous electrolyte liquid. The flow battery according to the present disclosure comprises a first non-aqueous electrolyte liquid, a first electrode, a second electrode, and a lithium ion conductive film. The first non-aqueous electrolyte liquid contains lithium ions and further biphenyl, phenanthrene, stilbene, triphenylene, anthracene, acenaphthene, acenaphthylene, fluorene, fluoranthene, o-terphenyl, m-terphenyl, or p-terphenyl. The lithium ion conductive film comprises a composite body. The composite body contains a lithium ion conductive polymer and polyvinylidene fluoride. The lithium ion conductive polymer includes an aromatic ring into which a lithium salt of an acidic group has been introduced. The lithium ion conductive polymer and the polyvinylidene fluoride have been mixed with each other homogeneously in the composite body.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventors: YUKA OKADA, SHINJI ANDO, SHO SHIBATA
  • Publication number: 20190356010
    Abstract: The flow battery according to the present disclosure comprises a first non-aqueous liquid, a first electrode in contact with the first non-aqueous liquid, a second electrode which serves as a counter electrode of the first electrode, and a lithium ion conductive film which separates the first electrode and the second electrode from each other. The lithium ion conductive film is formed of a polymer base material containing an ionic polymer. The polymer base material has an interspace which communicates with an outside thereof. The polymer base material is formed of at least one kind of resin selected from the group consisting of a thermosetting resin and a thermoplastic resin which has a melting point of not less than 150 degrees Celsius. The ionic polymer is contained in an inside of the interspace of the polymer base material.
    Type: Application
    Filed: May 21, 2019
    Publication date: November 21, 2019
    Inventors: YUKA OKADA, SHINJI ANDO, SHO SHIBATA