Patents by Inventor Shoichi Takemoto

Shoichi Takemoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11614232
    Abstract: On an inner wall surface of a plug hole, an internal thread portion and a seat portion are formed. The seat portion has a tapered seat surface. A glow plug with a combustion pressure sensor includes a housing, a glow heater, a load transfer member, and a pressure detector. The housing has an external thread and a seat facing portion. The seat facing portion has a tapered contact surface in surface contact with the tapered seat surface. A recessed portion recessed to be in non-contact with the seat portion is formed annularly about a central axis of the housing.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: March 28, 2023
    Assignee: DENSO CORPORATION
    Inventors: Shoichi Takemoto, Nobuyuki Abe, Kenji Ito
  • Patent number: 11307400
    Abstract: A zoom lens includes: a master lens including in order from an object side: a positive first lens unit configured not to move for zooming; a negative second lens unit configured to move for zooming; at least one lens unit configured to move for zooming; and a positive relay lens unit arranged closest to the image side; and an extender lens unit configured to change a focal length range of the zoom lens by one of: being inserted in place of a lens unit arranged adjacent to the relay lens unit on the object side; and being inserted into a space adjacent to the positive relay lens unit on the object side, wherein the extender lens unit includes a positive lens Gp, and an Abbe number and a partial dispersion ratio of the positive lens Gp are suitably set.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 19, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Shoichi Takemoto, Tomoya Yamada
  • Patent number: 11070147
    Abstract: A resonant inverter apparatus supplies a high AC voltage to a discharge load. In this apparatus, an inverter circuit converts a DC voltage to an AC voltage using a plurality of switching elements. A transformer steps up the AC voltage and generates a high AC voltage. A DC voltage detecting unit detects a value of a DC voltage supplied to the inverter circuit. A control unit generates a driving pulse for performing on/off switching of the switching elements. The switching elements include first and second switching elements. The control unit performs phase angle control of the driving pulse. In response to the detected value of the DC voltage being greater than a reference value, the control unit sets a switching phase angle of the second switching element relative to the first switching element serving as reference, based on the magnitude of the valued of the DC voltage.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 20, 2021
    Assignee: DENSO CORPORATION
    Inventor: Shoichi Takemoto
  • Patent number: 11061212
    Abstract: A zoom lens includes in order from an object side to an image side, a first lens unit having a positive refractive power; a second lens unit having a negative refractive power and configured to move for zooming; and at least one lens unit configured to move for zooming. The distance between each pair of the lens units adjacent to each other is changed for zooming. The first lens unit includes a negative lens and an Abbe number and a partial dispersion ratio of the negative lens are properly determined.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: July 13, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tomoya Yamada, Shoichi Takemoto
  • Patent number: 10862403
    Abstract: A power inversion apparatus includes a smoothing capacitor, first and second primary coils, a secondary coil, first to fourth switches of bridge circuit switches, a clamp capacitor, and a switch controller. The switch controller calculates a lower-arm duty ratio of each of the first and second switches using a map or a mathematical expression by feed-forward control based on an input voltage. The switch controller outputs a fixed value that is equal to or greater than a maximum value of the lower-arm duty ratio within a variation range of the input voltage as an upper-arm duty ratio of each of the third and fourth switches. The switch controller generates a pulse width modulation signal based on the calculated lower-arm duty ratio and the fixed value of the upper-arm duty ratio, and outputs the pulse width modulation signal to the bridge circuit switches.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: December 8, 2020
    Assignee: DENSO CORPORATION
    Inventors: Masaya Takahashi, Nobuhisa Yamaguchi, Masaki Kanesaki, Shoichi Takemoto
  • Patent number: 10761302
    Abstract: Provided is a zoom lens including in order from an object side: a positive first unit configured not to move for zooming; a negative second unit configured to move for zooming; a positive third unit configured to move for zooming; a negative fourth unit configured to move for zooming; and a positive rear unit including at least one lens unit, wherein the fourth unit is configured to move for focusing, and wherein a focal length of the fourth unit, a focal length of the rear unit at a telephoto end, a focal length of the zoom lens at a wide angle end, amounts of movement of the second and third units from the wide angle end to the telephoto end, a half angle of view at the wide angle end, an amount of displacement of an in-focus position.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: September 1, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Shoichi Takemoto
  • Publication number: 20200252002
    Abstract: A resonant inverter apparatus supplies a high AC voltage to a discharge load. In this apparatus, an inverter circuit converts a DC voltage to an AC voltage using a plurality of switching elements. A transformer steps up the AC voltage and generates a high AC voltage. A DC voltage detecting unit detects a value of a DC voltage supplied to the inverter circuit. A control unit generates a driving pulse for performing on/off switching of the switching elements. The switching elements include first and second switching elements. The control unit performs phase angle control of the driving pulse. In response to the detected value of the DC voltage being greater than a reference value, the control unit sets a switching phase angle of the second switching element relative to the first switching element serving as reference, based on the magnitude of the valued of the DC voltage.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 6, 2020
    Inventor: Shoichi TAKEMOTO
  • Publication number: 20200153342
    Abstract: A power inversion apparatus includes a smoothing capacitor, first and second primary coils, a secondary coil, first to fourth switches of bridge circuit switches, a clamp capacitor, and a switch controller. The switch controller calculates a lower-arm duty ratio of each of the first and second switches using a map or a mathematical expression by feed-forward control based on an input voltage. The switch controller outputs a fixed value that is equal to or greater than a maximum value of the lower-arm duty ratio within a variation range of the input voltage as an upper-arm duty ratio of each of the third and fourth switches. The switch controller generates a pulse width modulation signal based on the calculated lower-arm duty ratio and the fixed value of the upper-arm duty ratio, and outputs the pulse width modulation signal to the bridge circuit switches.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Masaya TAKAHASHI, Nobuhisa YAMAGUCHI, Masaki KANESAKI, Shoichi TAKEMOTO
  • Publication number: 20200018937
    Abstract: A zoom lens includes in order from an object side to an image side, a first lens unit having a positive refractive power; a second lens unit having a negative refractive power and configured to move for zooming; and at least one lens unit configured to move for zooming. The distance between each pair of the lens units adjacent to each other is changed for zooming. The first lens unit includes a negative lens and an Abbe number and a partial dispersion ratio of the negative lens are properly determined.
    Type: Application
    Filed: July 10, 2019
    Publication date: January 16, 2020
    Inventors: Tomoya Yamada, Shoichi Takemoto
  • Publication number: 20200018946
    Abstract: A zoom lens includes: a master lens including in order from an object side: a positive first lens unit configured not to move for zooming; a negative second lens unit configured to move for zooming; at least one lens unit configured to move for zooming; and a positive relay lens unit arranged closest to the image side; and an extender lens unit configured to change a focal length range of the zoom lens by one of: being inserted in place of a lens unit arranged adjacent to the relay lens unit on the object side; and being inserted into a space adjacent to the positive relay lens unit on the object side, wherein the extender lens unit includes a positive lens Gp, and an Abbe number and a partial dispersion ratio of the positive lens Gp are suitably set.
    Type: Application
    Filed: July 10, 2019
    Publication date: January 16, 2020
    Inventors: Shoichi Takemoto, Tomoya Yamada
  • Publication number: 20190271468
    Abstract: On an inner wall surface of a plug hole, an internal thread portion and a seat portion are formed. The seat portion has a tapered seat surface. A glow plug with a combustion pressure sensor includes a housing, a glow heater, a load transfer member, and a pressure detector. The housing has an external thread and a seat facing portion. The seat facing portion has a tapered contact surface in surface contact with the tapered seat surface. A recessed portion recessed to be in non-contact with the seat portion is formed annularly about a central axis of the housing.
    Type: Application
    Filed: May 21, 2019
    Publication date: September 5, 2019
    Inventors: Shoichi TAKEMOTO, Nobuyuki ABE, Kenji ITO
  • Publication number: 20190273447
    Abstract: In a discharge generator, a switch is connected to a DC power source, and a transformer includes a primary coil connected to the switch, and a secondary coil magnetically coupled to the primary coil and connected to a discharge load. A power measuring unit measures input power supplied from the direct-current power source. A control unit controls on-off switching operations of the switch to thereby convert an input direct-current voltage to an alternating-current voltage. The control unit changes a switching frequency of the on switching operations of the switch while performing an analysis of a frequency characteristic of the input power based on change of the switching frequency. The control unit determines whether the discharge load is a normal state or at least one of predetermined failure modes has occurred in the discharge load in accordance with a result of the analysis of the frequency characteristic of the input power.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 5, 2019
    Inventors: Shoichi Takemoto, Nobuhisa Yamaguchi
  • Patent number: 10401601
    Abstract: Provided is a zoom lens, including, in order from object side: a positive first unit; a negative second unit; a positive third unit; a negative fourth unit; and a positive fifth unit, in which: intervals between adjacent units are changed during zooming; the first unit is not moved in an optical axis direction for zooming, and the second, third, and fourth units are moved in the optical axis direction during zooming; the fourth unit is moved in the optical axis direction during focusing; the third unit includes, in order from the object side, a positive first subunit, and a positive second subunit, and the second subunit is moved during image stabilization in a direction having a component in a direction orthogonal to the optical axis; and focal lengths of the first, third, fourth unit, and the zoom lens at a wide angle end are appropriately set.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: September 3, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Shoichi Takemoto
  • Patent number: 10381807
    Abstract: In a discharge generator, a control unit switchably performs a continuous mode and a burst mode based on determination of whether target output power is higher than discharge start power. The burst mode alternately performs a discharge mode and a non-discharge mode. The control unit causes a burst ratio to be set to a value expressed by the following equation b=Po*/Pfs0 where b represents the burst ratio, Po* represents the target output power, and Pfs0 represents the discharge start power. The burst ratio is defined as a ratio of the discharge period to a burst period. The burst period is the sum of the discharge period and the stop period. The control unit causes, in the burst mode, the switch circuit to output, as the output power, the discharge start power during the discharge period.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 13, 2019
    Assignee: DENSO CORPORATION
    Inventor: Shoichi Takemoto
  • Publication number: 20190245525
    Abstract: A pulse power source apparatus that supplies a drive power to a pulse load circuit that periodically generates pulse current constituted of one or more consecutive pulses from the drive power. The pulse power source apparatus includes a DC voltage generation unit generating DC output voltage supplied to the pulse load circuit, and a pulse load drive signal generation unit generating a drive signal that drives the pulse load circuit to generate the pulse current. The DC output voltage which has dropped due to output of the pulse current is controlled such that a timing at which the DC output voltage reaches a reference potential corresponds to a timing at which a subsequent pulse current is generated, the reference potential being a potential capable of generating the pulse.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 8, 2019
    Inventors: Masaki KANESAKI, Nobuhisa YAMAGUCHI, Shoichi TAKEMOTO
  • Patent number: 10367427
    Abstract: In a resonant inverter device, a main circuit is configured to convert input power supplied from a direct-current (DC) power source into alternating-current (AC) power and supply the AC power to a resonance load as output power, and a controller is configured to control operations of the main circuit. In the controller, a deriver is configured to derive a power loss or circuit efficiency of the main circuit as a conversion loss parameter of the main circuit, and an input power calculator is configured to calculate an increased target output value by increasing the target output value using the conversion loss parameter, as a target value of input power that is input to the main circuit. In the controller, an operation controller is configured to control operations of the main circuit such that the calculated target value of the input power is input to the main circuit.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 30, 2019
    Assignee: DENSO CORPORATION
    Inventors: Shoichi Takemoto, Hideo Naruse
  • Patent number: 10312826
    Abstract: In a power conversion apparatus, a controller calculates a duty ratio being a ratio of an on-duration of each of bridge-circuit switches configured by first to fourth switches to a switching period, and outputs a gate signal to each of the bridge-circuit switches. The controller adjusts the duty ratio of each of the bridge-circuit switches such that a switch-current difference becomes closer to a value obtained by multiplying an input-current difference by the predetermined target ratio that is a value greater than 0 and less than 1. The switch-current difference is a difference between a first switch current and a second switch current or a difference between a third switch current and a fourth switch current detected by a switch-current sensor at predetermined timings in the switching period. The input-current difference is a difference between input currents detected by an input-current sensor simultaneously with detection timings of switch currents.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: June 4, 2019
    Assignee: DENSO CORPORATION
    Inventors: Masaya Takahashi, Nobuhisa Yamaguchi, Masaki Kanesaki, Shoichi Takemoto
  • Publication number: 20190165551
    Abstract: In a discharge generator, a control unit switchably performs a continuous mode and a burst mode based on determination of whether target output power is higher than discharge start power. The burst mode alternately performs a discharge mode and a non-discharge mode. The control unit causes a burst ratio to be set to a value expressed by the following equation b=PO*/Pfs0 where b represents the burst ratio, PO* represents the target output power, and Pfs0represents the discharge start power. The burst ratio is defined as a ratio of the discharge period to a burst period. The burst period is the sum of the discharge period and the stop period. The control unit causes, in the burst mode, the switch circuit to output, as the output power, the discharge start power during the discharge period.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventor: Shoichi TAKEMOTO
  • Publication number: 20190123663
    Abstract: In a resonant inverter device, a main circuit is configured to convert input power supplied from a direct-current (DC) power source into alternating-current (AC) power and supply the AC power to a resonance load as output power, and a controller is configured to control operations of the main circuit. In the controller, a deriver is configured to derive a power loss or circuit efficiency of the main circuit as a conversion loss parameter of the main circuit, and an input power calculator is configured to calculate an increased target output value by increasing the target output value using the conversion loss parameter, as a target value of input power that is input to the main circuit. In the controller, an operation controller is configured to control operations of the main circuit such that the calculated target value of the input power is input to the main circuit.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 25, 2019
    Inventors: Shoichi TAKEMOTO, Hideo NARUSE
  • Publication number: 20190089267
    Abstract: In a power conversion apparatus, a controller calculates a duty ratio being a ratio of an on-duration of each of bridge-circuit switches configured by first to fourth switches to a switching period, and outputs a gate signal to each of the bridge-circuit switches. The controller adjusts the duty ratio of each of the bridge-circuit switches such that a switch-current difference becomes closer to a value obtained by multiplying an input-current difference by the predetermined target ratio that is a value greater than 0 and less than 1. The switch-current difference is a difference between a first switch current and a second switch current or a difference between a third switch current and a fourth switch current detected by a switch-current sensor at predetermined timings in the switching period. The input-current difference is a difference between input currents detected by an input-current sensor simultaneously with detection timings of switch currents.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 21, 2019
    Inventors: Masaya TAKAHASHI, Nobuhisa YAMAGUCHI, Masaki KANESAKI, Shoichi TAKEMOTO