Patents by Inventor SHU-YUN ZHOU

SHU-YUN ZHOU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11502253
    Abstract: A phase transformation electronic device comprises: a first conductive layer; a second conductive layer opposite to and spaced from the first conductive layer; a phase transformation material layer disposed between the first conductive layer and the second conductive layer, wherein the phase transformation material layer is formed by a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5; and an ionic liquid layer disposed between the phase transformation material layer and the first conductive layer, wherein the ionic liquid layer is capable of providing hydrogen ions and oxygen ions.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: November 15, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Pu Yu, Nian-Peng Lu, Jian Wu, Shu-Yun Zhou
  • Patent number: 11434148
    Abstract: A hydrogen-containing transition metal oxide is provided. The hydrogen-containing transition metal oxide has a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5. The present disclosure further provides a primary battery by using the hydrogen-containing transition metal oxide as electrodes and a method for making the hydrogen-containing transition metal oxide.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: September 6, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Pu Yu, Nian-Peng Lu, Jian Wu, Shu-Yun Zhou
  • Patent number: 11217809
    Abstract: A solid-state fuel battery comprises an anode, a cathode spaced from the anode, and a solid-state electrolyte disposed between the anode and the cathode. A material of the solid-state electrolyte is a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5. A method for making the solid-state electrolyte for the solid-state fuel battery is further provided in the present disclosure.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: January 4, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Pu Yu, Nian-Peng Lu, Jian Wu, Shu-Yun Zhou
  • Patent number: 11111601
    Abstract: The disclosure relates to a semimetal compound of Pt and a method for making the same. The semimetal compound is a single crystal material of PtSe2. The method comprises: providing a PtSe2 polycrystalline material; placing the PtSe2 polycrystalline material in a reacting chamber; placing chemical transport medium in the reacting chamber; evacuating the reacting chamber to be vacuum less than 10 Pa; placing the reacting chamber at a temperature gradient, wherein the reacting chamber has a first end at a temperature of 1200 degrees Celsius to 1000 degrees Celsius and a second end opposite to the first end and at a temperature of 1000 degrees Celsius to 900 degrees Celsius; and keeping the reacting chamber in the temperature gradient for 10 days to 30 days.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 7, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Patent number: 11018294
    Abstract: A method for regulating a phase transformation of a hydrogen-containing transition metal oxide comprises steps of: providing a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein the hydrogen-containing transition metal oxide is in form of a first phase, A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5; soaking the hydrogen-containing transition metal oxide with a first ionic liquid capable of providing hydrogen ions and oxygen ions; and applying a gating voltage to the hydrogen-containing transition metal oxide with the first ionic liquid as a gate to regulate the phase transformation of the hydrogen-containing transition metal oxide.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 25, 2021
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Pu Yu, Nian-Peng Lu, Jian Wu, Shu-Yun Zhou
  • Patent number: 11001937
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtSe2. The method comprises: placing pure Pt and pure Se in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature of 600 degrees Celsius to 800 degrees Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature of 400 degrees Celsius to 500 degrees Celsius at a cooling rate of 1 degrees Celsius per hour to 10 degrees Celsius per hour and keeping for 24 hours to 100 hours to obtain a crystal material of PtSe2; and separating the excessive reacting materials from the crystal material of PtSe2.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 11, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Publication number: 20200031685
    Abstract: A hydrogen-containing transition metal oxide is provided. The hydrogen-containing transition metal oxide has a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5. The present disclosure further provides a primary battery by using the hydrogen-containing transition metal oxide as electrodes and a method for making the hydrogen-containing transition metal oxide.
    Type: Application
    Filed: May 22, 2019
    Publication date: January 30, 2020
    Applicant: Tsinghua University
    Inventors: PU YU, NIAN-PENG LU, JIAN WU, SHU-YUN ZHOU
  • Publication number: 20190301052
    Abstract: The disclosure relates to a semimetal compound of Pt and a method for making the same. The semimetal compound is a single crystal material of PtSe2. The method comprises: providing a PtSe2 polycrystalline material; placing the PtSe2 polycrystalline material in a reacting chamber; placing chemical transport medium in the reacting chamber; evacuating the reacting chamber to be vacuum less than 10 Pa; placing the reacting chamber at a temperature gradient, wherein the reacting chamber has a first end at a temperature of 1200 degrees Celsius to 1000 degrees Celsius and a second end opposite to the first end and at a temperature of 1000 degrees Celsius to 900 degrees Celsius; and keeping the reacting chamber in the temperature gradient for 10 days to 30 days.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 3, 2019
    Inventors: KE-NAN ZHANG, MING-ZHE YAN, SHU-YUN ZHOU, YANG WU, SHOU-SHAN FAN
  • Publication number: 20190280322
    Abstract: A solid-state fuel battery comprises an anode, a cathode spaced from the anode, and a solid-state electrolyte disposed between the anode and the cathode. A material of the solid-state electrolyte is a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5. A method for making the solid-state electrolyte for the solid-state fuel battery is further provided in the present disclosure.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 12, 2019
    Applicant: Tsinghua University
    Inventors: PU YU, NIAN-PENG LU, JIAN WU, SHU-YUN ZHOU
  • Publication number: 20190280202
    Abstract: A phase transformation electronic device comprises: a first conductive layer; a second conductive layer opposite to and spaced from the first conductive layer; a phase transformation material layer disposed between the first conductive layer and the second conductive layer, wherein the phase transformation material layer is formed by a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5; and an ionic liquid layer disposed between the phase transformation material layer and the first conductive layer, wherein the ionic liquid layer is capable of providing hydrogen ions and oxygen ions.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 12, 2019
    Applicant: Tsinghua University
    Inventors: PU YU, NIAN-PENG LU, JIAN WU, SHU-YUN ZHOU
  • Publication number: 20190280201
    Abstract: A method for regulating a phase transformation of a hydrogen-containing transition metal oxide comprises steps of: providing a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein the hydrogen-containing transition metal oxide is in form of a first phase, A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5; soaking the hydrogen-containing transition metal oxide with a first ionic liquid capable of providing hydrogen ions and oxygen ions; and applying a gating voltage to the hydrogen-containing transition metal oxide with the first ionic liquid as a gate to regulate the phase transformation of the hydrogen-containing transition metal oxide.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 12, 2019
    Applicant: Tsinghua University
    Inventors: PU YU, NIAN-PENG LU, JIAN WU, SHU-YUN ZHOU
  • Patent number: 10407799
    Abstract: The disclosure relates to a semimetal compound of Pt and a method for making the same. The semimetal compound is a single crystal material of PtSe2. The method comprises: providing a PtSe2 polycrystalline material; placing the PtSe2 polycrystalline material in a reacting chamber; placing chemical transport medium in the reacting chamber; evacuating the reacting chamber to be vacuum less than 10 Pa; placing the reacting chamber at a temperature gradient, wherein the reacting chamber has a first end at a temperature of 1200 degrees Celsius to 1000 degrees Celsius and a second end opposite to the first end and at a temperature of 1000 degrees Celsius to 900 degrees Celsius; and keeping the reacting chamber in the temperature gradient for 10 days to 30 days.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: September 10, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Publication number: 20190177873
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtSe2. The method comprises: placing pure Pt and pure Se in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature of 600 degrees Celsius to 800 degrees Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature of 400 degrees Celsius to 500 degrees Celsius at a cooling rate of 1 degrees Celsius per hour to 10 degrees Celsius per hour and keeping for 24 hours to 100 hours to obtain a crystal material of PtSe2; and separating the excessive reacting materials from the crystal material of PtSe2.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: KE-NAN ZHANG, MING-ZHE YAN, SHU-YUN ZHOU, YANG WU, SHOU-SHAN FAN
  • Patent number: 10280529
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtSe2. The method comprises: placing pure Pt and pure Se in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature of 600 degrees Celsius to 800 degrees Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature of 400 degrees Celsius to 500 degrees Celsius and keeping for 24 hours to 100 hours at a cooling rate of 1 degrees Celsius per hour to 10 degrees Celsius per hour to obtain a crystal material of PtSe2; and separating the excessive reacting materials from the crystal material of PtSe2.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: May 7, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Patent number: 10138571
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtTe2. The method comprises: placing pure Pt and pure Te in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature from 600 degree Celsius to 800 degree Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature from 400 degree Celsius to 500 degree Celsius and keeping for 24 hours to 100 hours at a cooling rate from 1 degree Celsius per hour to 10 degree Celsius per hour to obtain a crystal material of PtTe2; and separating the excessive reacting materials from the crystal material of PtTe2.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 27, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Patent number: 10132002
    Abstract: The disclosure relates to a semimetal compound of Pt and a method for making the same. The semimetal compound is a single crystal material of PtTe2. The method comprises: providing a PtTe2 polycrystalline material; placing the PtTe2 polycrystalline material in a reacting chamber; placing chemical transport medium in the reacting chamber; evacuating the reacting chamber to be vacuum less than 10 Pa; placing the reacting chamber in a temperature gradient, wherein the reacting chamber has a first end in a temperature from 1200 degree Celsius to 1000 degree Celsius and a second end opposite to the first end and in a temperature from 1000 degree Celsius to 900 degree Celsius; and keeping the reacting chamber in the temperature gradient for 10 days to 30 days.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 20, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Publication number: 20180087178
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtSe2. The method comprises: placing pure Pt and pure Se in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature of 600 degrees Celsius to 800 degrees Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature of 400 degrees Celsius to 500 degrees Celsius and keeping for 24 hours to 100 hours at a cooling rate of 1 degrees Celsius per hour to 10 degrees Celsius per hour to obtain a crystal material of PtSe2; and separating the excessive reacting materials from the crystal material of PtSe2.
    Type: Application
    Filed: July 6, 2017
    Publication date: March 29, 2018
    Inventors: KE-NAN ZHANG, MING-ZHE YAN, SHU-YUN ZHOU, YANG WU, SHOU-SHAN FAN
  • Publication number: 20180087187
    Abstract: The disclosure relates to a semimetal compound of Pt and a method for making the same. The semimetal compound is a single crystal material of PtSe2. The method comprises: providing a PtSe2 polycrystalline material; placing the PtSe2 polycrystalline material in a reacting chamber; placing chemical transport medium in the reacting chamber; evacuating the reacting chamber to be vacuum less than 10 Pa; placing the reacting chamber at a temperature gradient, wherein the reacting chamber has a first end at a temperature of 1200 degrees Celsius to 1000 degrees Celsius and a second end opposite to the first end and at a temperature of 1000 degrees Celsius to 900 degrees Celsius; and keeping the reacting chamber in the temperature gradient for 10 days to 30 days.
    Type: Application
    Filed: July 6, 2017
    Publication date: March 29, 2018
    Inventors: KE-NAN ZHANG, MING-ZHE YAN, SHU-YUN ZHOU, YANG WU, SHOU-SHAN FAN
  • Publication number: 20180016700
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtTe2. The method comprises: placing pure Pt and pure Te in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature from 600 degree Celsius to 800 degree Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature from 400 degree Celsius to 500 degree Celsius and keeping for 24 hours to 100 hours at a cooling rate from 1 degree Celsius per hour to 10 degree Celsius per hour to obtain a crystal material of PtTe2; and separating the excessive reacting materials from the crystal material of PtTe2.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 18, 2018
    Inventors: KE-NAN ZHANG, MING-ZHE YAN, SHU-YUN ZHOU, YANG WU, SHOU-SHAN FAN
  • Publication number: 20180016707
    Abstract: The disclosure relates to a semimetal compound of Pt and a method for making the same. The semimetal compound is a single crystal material of PtTe2. The method comprises: providing a PtTe2 polycrystalline material; placing the PtTe2 polycrystalline material in a reacting chamber; placing chemical transport medium in the reacting chamber; evacuating the reacting chamber to be vacuum less than 10 Pa; placing the reacting chamber in a temperature gradient, wherein the reacting chamber has a first end in a temperature from 1200 degree Celsius to 1000 degree Celsius and a second end opposite to the first end and in a temperature from 1000 degree Celsius to 900 degree Celsius; and keeping the reacting chamber in the temperature gradient for 10 days to 30 days.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 18, 2018
    Inventors: KE-NAN ZHANG, MING-ZHE YAN, SHU-YUN ZHOU, YANG WU, SHOU-SHAN FAN